metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 회전 걸레 I형 받이 통돌이 청소기 밀대 막대 물 밀대걸레 추가구매시 배송비 스쿠라
- text: 사선컷팅 돌돌이 테이프클리너 리필 15롤(3롤x5봉지) MinSellAmount 롯데 아이몰
- text: 청소 슬리퍼 층간소음 발 걸레 거실화 극세사 신발 바닥 탈부착 리필 대형 빅사이즈 청소슬리퍼-와플(여성용)블루 다소니
- text: 눌러주는 압축 쓰레기통 공간 절약 종량제 휴지통 대형 화장실 25리터 사각 화이트 다루솔
- text: 국산 플라이토 실리콘 클라우드 미니 스퀴지 15cm 민트 골드깨비
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.9071537290715372
name: Metric
SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 11 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0.0 |
|
4.0 |
|
8.0 |
|
9.0 |
|
6.0 |
|
1.0 |
|
3.0 |
|
7.0 |
|
10.0 |
|
2.0 |
|
5.0 |
|
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.9072 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_lh26")
# Run inference
preds = model("국산 플라이토 실리콘 클라우드 미니 스퀴지 15cm 민트 골드깨비")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 10.5873 | 42 |
Label | Training Sample Count |
---|---|
0.0 | 50 |
1.0 | 50 |
2.0 | 50 |
3.0 | 50 |
4.0 | 50 |
5.0 | 50 |
6.0 | 50 |
7.0 | 50 |
8.0 | 50 |
9.0 | 50 |
10.0 | 50 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0116 | 1 | 0.4009 | - |
0.5814 | 50 | 0.3271 | - |
1.1628 | 100 | 0.1934 | - |
1.7442 | 150 | 0.0971 | - |
2.3256 | 200 | 0.074 | - |
2.9070 | 250 | 0.0704 | - |
3.4884 | 300 | 0.0402 | - |
4.0698 | 350 | 0.0309 | - |
4.6512 | 400 | 0.023 | - |
5.2326 | 450 | 0.0112 | - |
5.8140 | 500 | 0.0037 | - |
6.3953 | 550 | 0.0009 | - |
6.9767 | 600 | 0.0002 | - |
7.5581 | 650 | 0.0003 | - |
8.1395 | 700 | 0.0002 | - |
8.7209 | 750 | 0.0001 | - |
9.3023 | 800 | 0.0001 | - |
9.8837 | 850 | 0.0001 | - |
10.4651 | 900 | 0.0001 | - |
11.0465 | 950 | 0.0001 | - |
11.6279 | 1000 | 0.0001 | - |
12.2093 | 1050 | 0.0001 | - |
12.7907 | 1100 | 0.0002 | - |
13.3721 | 1150 | 0.0001 | - |
13.9535 | 1200 | 0.0001 | - |
14.5349 | 1250 | 0.0001 | - |
15.1163 | 1300 | 0.0001 | - |
15.6977 | 1350 | 0.0001 | - |
16.2791 | 1400 | 0.0001 | - |
16.8605 | 1450 | 0.0001 | - |
17.4419 | 1500 | 0.0001 | - |
18.0233 | 1550 | 0.0001 | - |
18.6047 | 1600 | 0.0001 | - |
19.1860 | 1650 | 0.0001 | - |
19.7674 | 1700 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}