Edit model card

LLM agent flow text classification

This model identifies common LLM agent events and patterns within the conversation flow. Such events include an apology, where the LLM acknowledges a mistake. The flow labels can serve as foundational elements for sophisticated LLM analytics.

It is ONNX quantized and is a fined-tune of MiniLMv2-L6-H384. The base model can be found here

This model is only for the LLM agent texts in the dialog. For the user texts use this model.

Optimum

Installation

Install from source:

python -m pip install optimum[onnxruntime]@git+https://github.com/huggingface/optimum.git

Run the Model

from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import AutoTokenizer, pipeline

model = ORTModelForSequenceClassification.from_pretrained('minuva/MiniLMv2-agentflow-v2-onnx', provider="CPUExecutionProvider")
tokenizer = AutoTokenizer.from_pretrained('minuva/MiniLMv2-agentflow-v2-onnx', use_fast=True, model_max_length=256, truncation=True, padding='max_length')

pipe = pipeline(task='text-classification', model=model, tokenizer=tokenizer, )
texts = ["My apologies", "Im not sure what you mean"]
pipe(texts)
# [{'label': 'agent_apology_error_mistake', 'score': 0.9967106580734253},
# {'label': 'agent_didnt_understand', 'score': 0.9975798726081848}]

ONNX Runtime only

A lighter solution for deployment

Installation

pip install tokenizers
pip install onnxruntime
git clone https://huggingface.co/minuva/MiniLMv2-agentflow-v2-onnx

Run the Model

import os
import numpy as np
import json

from tokenizers import Tokenizer
from onnxruntime import InferenceSession


model_name = "minuva/MiniLMv2-agentflow-v2-onnx"

tokenizer = Tokenizer.from_pretrained(model_name)
tokenizer.enable_padding(
    pad_token="<pad>",
    pad_id=1,
)
tokenizer.enable_truncation(max_length=256)
batch_size = 16

texts = ["thats my mistake"]
outputs = []
model = InferenceSession("MiniLMv2-agentflow-v2-onnx/model_optimized_quantized.onnx", providers=['CPUExecutionProvider'])

with open(os.path.join("MiniLMv2-agentflow-v2-onnx", "config.json"), "r") as f:
            config = json.load(f)

output_names = [output.name for output in model.get_outputs()]
input_names = [input.name for input in model.get_inputs()]

for subtexts in np.array_split(np.array(texts), len(texts) // batch_size + 1):
            encodings = tokenizer.encode_batch(list(subtexts))
            inputs = {
                "input_ids": np.vstack(
                    [encoding.ids for encoding in encodings],
                ),
                "attention_mask": np.vstack(
                    [encoding.attention_mask for encoding in encodings],
                ),
                "token_type_ids": np.vstack(
                    [encoding.type_ids for encoding in encodings],
                ),
            }

            for input_name in input_names:
                if input_name not in inputs:
                    raise ValueError(f"Input name {input_name} not found in inputs")

            inputs = {input_name: inputs[input_name] for input_name in input_names}
            output = np.squeeze(
                np.stack(
                    model.run(output_names=output_names, input_feed=inputs)
                ),
                axis=0,
            )
            outputs.append(output)

outputs = np.concatenate(outputs, axis=0)
scores = 1 / (1 + np.exp(-outputs))
results = []
for item in scores:
    labels = []
    scores = []
    for idx, s in enumerate(item):
        labels.append(config["id2label"][str(idx)])
        scores.append(float(s))
    results.append({"labels": labels, "scores": scores})


res = []

for result in results:
    joined = list(zip(result['labels'], result['scores']))
    max_score = max(joined, key=lambda x: x[1])    
    res.append(max_score)

res
# [('agent_apology_error_mistake', 0.9991968274116516),
# ('agent_didnt_understand', 0.9993669390678406)]

Categories Explanation

Click to expand!
- OTHER: Responses or actions by the agent that do not fit into the predefined categories or are outside the scope of the specific interactions listed.

- agent_apology_error_mistake: When the agent acknowledges an error or mistake in the information provided or in the handling of the request.

- agent_apology_unsatisfactory: The agent expresses an apology for providing an unsatisfactory response or for any dissatisfaction experienced by the user.

- agent_didnt_understand: Indicates that the agent did not understand the user's request or question.

- agent_limited_capabilities: The agent communicates its limitations in addressing certain requests or providing certain types of information.

- agent_refuses_answer: When the agent explicitly refuses to answer a question or fulfill a request, due to policy restrictions or ethical considerations.

- image_limitations": The agent points out limitations related to handling or interpreting images.

- no_information_doesnt_know": The agent indicates that it has no information available or does not know the answer to the user's question.

- success_and_followup_assistance": The agent successfully provides the requested information or service and offers further assistance or follow-up actions if needed.

Metrics in our private test dataset

Model (params) Loss Accuracy F1
minuva/MiniLMv2-agentflow-v2 (33M) 0.1462 0.9616 0.9618
minuva/MiniLMv2-agentflow-v2-onnx (33M) - 0.9624 0.9626

Deployment

Check our llm-flow-classification repository for a FastAPI and ONNX based server to deploy this model on CPU devices.

Downloads last month
9,803
Inference Examples
Inference API (serverless) has been turned off for this model.

Collection including minuva/MiniLMv2-agentflow-v2-onnx