Edit model card

BERT Base Uncased Finetuned on TriviaQA

The BERT (Base) model is finetuned on the TriviaQA dataset using a modified version of the run_squad.py legacy script in Transformers. The script is provided in this repository.

$ cd ~/projects/transformers/examples/legacy/question-answering
$ mkdir bert_base_uncased_finetuned_triviaqa
python run_triviaqa.py \
        --model_type bert \
        --model_name_or_path "bert-base-uncased" \
        --do_train \
        --do_eval \
        --do_lower_case \
        --num_train_epochs 2 \
        --per_gpu_train_batch_size 8 \
        --per_gpu_eval_batch_size 32 \
        --max_seq_length 384 \
        --max_grad_norm inf\
        --doc_stride 128 \
        --train_file "~/projects/data/triviaqa/squad-triviaqa-wikipedia-train.json" \
        --predict_file "~/projects//data/triviaqa/squad-triviaqa-wikipedia-dev.json" \
        --output_dir "./bert_base_uncased_finetuned_triviaqa" \
        --save_steps 50000

Results:

{'exact': 55.57530864197531, 'f1': 61.37345358329793, 'total': 10125, 'HasAns_exact': 55.57530864197531, 'HasAns_f1': 61.37345358329793, 'HasAns_total': 10125, 'best_exact': 55.57530864197531, 'best_exact_thresh': 0.0, 'best_f1': 61.37345358329793, 'best_f1_thresh': 0.0}
Downloads last month
30
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train mirbostani/bert-base-uncased-finetuned-triviaqa