NeuralDaredevil-8B-abliterated
This is a DPO fine-tune of mlabonne/Daredevil-8-abliterated, trained on one epoch of mlabonne/orpo-dpo-mix-40k. The DPO fine-tuning successfully recovers the performance loss due to the abliteration process, making it an excellent uncensored model.
π Applications
NeuralDaredevil-8B-abliterated performs better than the Instruct model on my tests.
You can use it for any application that doesn't require alignment, like role-playing. Tested on LM Studio using the "Llama 3" and "Llama 3 v2" presets.
β‘ Quantization
Thanks to QuantFactory, ZeroWw, Zoyd, solidrust, and tarruda for providing these quants.
- GGUF: https://huggingface.co/QuantFactory/NeuralDaredevil-8B-abliterated-GGUF
- GGUF (FP16): https://huggingface.co/ZeroWw/NeuralDaredevil-8B-abliterated-GGUF
- EXL2: https://huggingface.co/Zoyd/mlabonne_NeuralDaredevil-8B-abliterated-4_0bpw_exl2
- AWQ: https://huggingface.co/solidrust/NeuralDaredevil-8B-abliterated-AWQ
- ollama:
π Evaluation
Open LLM Leaderboard
NeuralDaredevil-8B is the best-performing uncensored 8B model on the Open LLM Leaderboard (MMLU score).
Nous
Evaluation performed using LLM AutoEval. See the entire leaderboard here.
Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
---|---|---|---|---|---|
mlabonne/NeuralDaredevil-8B-abliterated π | 55.87 | 43.73 | 73.6 | 59.36 | 46.8 |
mlabonne/Daredevil-8B π | 55.87 | 44.13 | 73.52 | 59.05 | 46.77 |
mlabonne/Daredevil-8B-abliterated π | 55.06 | 43.29 | 73.33 | 57.47 | 46.17 |
NousResearch/Hermes-2-Theta-Llama-3-8B π | 54.28 | 43.9 | 72.62 | 56.36 | 44.23 |
openchat/openchat-3.6-8b-20240522 π | 53.49 | 44.03 | 73.67 | 49.78 | 46.48 |
meta-llama/Meta-Llama-3-8B-Instruct π | 51.34 | 41.22 | 69.86 | 51.65 | 42.64 |
meta-llama/Meta-Llama-3-8B π | 45.42 | 31.1 | 69.95 | 43.91 | 36.7 |
π³ Model family tree
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Daredevil-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 33
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train mlabonne/NeuralDaredevil-8B-abliterated-AWQ
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard69.280
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard85.050
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard69.100
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard60.000
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard78.690
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard71.800