mlabonne's picture
Update README.md
54fdf5a verified
---
license: llama3
tags:
- dpo
datasets:
- mlabonne/orpo-dpo-mix-40k
model-index:
- name: Daredevil-8B-abliterated-dpomix
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.28
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.05
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.1
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 60
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.69
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.8
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
name: Open LLM Leaderboard
---
# NeuralDaredevil-8B-abliterated
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/gFEhcIDSKa3AWpkNfH91q.jpeg)
This is a DPO fine-tune of [mlabonne/Daredevil-8-abliterated](https://huggingface.co/mlabonne/Daredevil-8B-abliterated), trained on one epoch of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k).
The DPO fine-tuning successfully recovers the performance loss due to the abliteration process, making it an excellent uncensored model.
## πŸ”Ž Applications
NeuralDaredevil-8B-abliterated performs better than the Instruct model on my tests.
You can use it for any application that doesn't require alignment, like role-playing. Tested on LM Studio using the "Llama 3" and "Llama 3 v2" presets.
## ⚑ Quantization
Thanks to QuantFactory, ZeroWw, Zoyd, solidrust, and tarruda for providing these quants.
* **GGUF**: https://huggingface.co/QuantFactory/NeuralDaredevil-8B-abliterated-GGUF
* **GGUF (FP16)**: https://huggingface.co/ZeroWw/NeuralDaredevil-8B-abliterated-GGUF
* **EXL2**: https://huggingface.co/Zoyd/mlabonne_NeuralDaredevil-8B-abliterated-4_0bpw_exl2
* **AWQ**: https://huggingface.co/solidrust/NeuralDaredevil-8B-abliterated-AWQ
* **ollama**:
* **16-bit**: https://ollama.com/tarruda/neuraldaredevil-8b-abliterated
* **8-bit**: https://ollama.com/lstep/neuraldaredevil-8b-abliterated
* **5-bit**: https://ollama.com/closex/neuraldaredevil-8b-abliterated
## πŸ† Evaluation
### Open LLM Leaderboard
NeuralDaredevil-8B is the best-performing uncensored 8B model on the Open LLM Leaderboard (MMLU score).
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/HQtd51mJfVRhJ0lJFLceM.png)
### Nous
Evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval). See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
| [**mlabonne/NeuralDaredevil-8B-abliterated**](https://huggingface.co/mlabonne/NeuralDaredevil-8B-abliterated) [πŸ“„](https://gist.github.com/mlabonne/ae0bf16936cef900b72964b33c99edbc) | **55.87** | **43.73** | **73.6** | **59.36** | **46.8** |
| [mlabonne/Daredevil-8B](https://huggingface.co/mlabonne/Daredevil-8B) [πŸ“„](https://gist.github.com/mlabonne/080f9c5f153ea57a7ab7d932cf896f21) | 55.87 | 44.13 | 73.52 | 59.05 | 46.77 |
| [mlabonne/Daredevil-8B-abliterated](https://huggingface.co/mlabonne/Daredevil-8B-abliterated) [πŸ“„](https://gist.github.com/mlabonne/32cdd8460804662c856bcb2a20acd49e) | 55.06 | 43.29 | 73.33 | 57.47 | 46.17 |
| [NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B) [πŸ“„](https://gist.github.com/mlabonne/5df2a3051dd6eb3368a77b684635dc05) | 54.28 | 43.9 | 72.62 | 56.36 | 44.23 |
| [openchat/openchat-3.6-8b-20240522](https://huggingface.co/openchat/openchat-3.6-8b-20240522) [πŸ“„](https://gist.github.com/mlabonne/95eef8e8d26b7b17910dcb78e1c95f4a) | 53.49 | 44.03 | 73.67 | 49.78 | 46.48 |
| [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) [πŸ“„](https://gist.github.com/mlabonne/8329284d86035e6019edb11eb0933628) | 51.34 | 41.22 | 69.86 | 51.65 | 42.64 |
| [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) [πŸ“„](https://gist.github.com/mlabonne/616b6245137a9cfc4ea80e4c6e55d847) | 45.42 | 31.1 | 69.95 | 43.91 | 36.7 |
## 🌳 Model family tree
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/ekwRGgnjzEOyprT8sEBFt.png)
## πŸ’» Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Daredevil-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```