unga-climate-classifier
This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0807
- Accuracy: 0.975
- F1 Macro: 0.9710
- Accuracy Balanced: 0.9715
- F1 Micro: 0.975
- Precision Macro: 0.9705
- Recall Macro: 0.9715
- Precision Micro: 0.975
- Recall Micro: 0.975
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 80
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Accuracy Balanced | F1 Micro | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 123 | 0.1057 | 0.9726 | 0.9675 | 0.9583 | 0.9726 | 0.9783 | 0.9583 | 0.9726 | 0.9726 |
No log | 2.0 | 246 | 0.1102 | 0.9726 | 0.9683 | 0.9697 | 0.9726 | 0.9669 | 0.9697 | 0.9726 | 0.9726 |
No log | 3.0 | 369 | 0.0894 | 0.9798 | 0.9763 | 0.9729 | 0.9798 | 0.9800 | 0.9729 | 0.9798 | 0.9798 |
No log | 4.0 | 492 | 0.1098 | 0.9762 | 0.9723 | 0.9723 | 0.9762 | 0.9723 | 0.9723 | 0.9762 | 0.9762 |
0.1374 | 5.0 | 615 | 0.1026 | 0.9798 | 0.9763 | 0.9729 | 0.9798 | 0.9800 | 0.9729 | 0.9798 | 0.9798 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.5.0+cu121
- Datasets 2.6.0
- Tokenizers 0.15.2
- Downloads last month
- 0
Model tree for mljn/unga-climate-classifier
Base model
microsoft/deberta-v3-base