PhoneLM
Collection
A highly capable and efficient small language model family
•
6 items
•
Updated
PhoneLM-1.5B-Call is a 1.5 billion parameter decoder-only language model, fined-turned from PhoneLM-1.5B-Instruct, used for Android intent calling.
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = 'mllmTeam/PhoneLM-1.5B-Call'
system_prompt = "You are an expert in composing functions."
user_message = """
Here is a list of functions:
Name:
web_search
Description:
Initiates a web search using the specified query.
This function starts a web search using the default search engine.
It opens the search results in the default web browser or appropriate search application.
Args:
query (str): The search string or keywords to be used for the web search.
engine (str): The search engine to use. Default is "baidu".
Possible values are: "baidu", "google"
Returns:
None
Example:
# Perform a simple web search
web_search("Python programming tutorials")
# Search for a phrase
web_search('"to be or not to be"')
# Search using a specific search engine
web_search("Python programming tutorials", "google")
Now my query is: Help me search the president of United State
"""
prompt = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_message}
]
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='cuda', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name)
input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
inp = tokenizer(input_text, return_tensors="pt")
inp = {k: v.to('cuda') for k, v in inp.items()}
out = model.generate(**inp,
max_length=1000,
do_sample=True,
temperature=0.7,
top_p=0.7
)
text = tokenizer.decode(out[0], skip_special_tokens=True)
print(text)
PhoneLM 1.5B
models are auto-regressive language models based on the transformer decoder architecture.The model is a decoder-only transformer architecture with the following modifications:
Hidden Size | Layers | Heads | Sequence Length |
---|---|---|---|
2560 | 19 | 16 | 2048 |
@misc{yi2024phonelmanefficientcapablesmall,
title={PhoneLM:an Efficient and Capable Small Language Model Family through Principled Pre-training},
author={Rongjie Yi and Xiang Li and Weikai Xie and Zhenyan Lu and Chenghua Wang and Ao Zhou and Shangguang Wang and Xiwen Zhang and Mengwei Xu},
year={2024},
eprint={2411.05046},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2411.05046},
}