katopz's picture
Upload folder using huggingface_hub
5030c76 verified
metadata
language:
  - multilingual
  - af
  - am
  - ar
  - as
  - az
  - be
  - bg
  - bn
  - br
  - bs
  - ca
  - cs
  - cy
  - da
  - de
  - el
  - en
  - eo
  - es
  - et
  - eu
  - fa
  - fi
  - fr
  - fy
  - ga
  - gd
  - gl
  - gu
  - ha
  - he
  - hi
  - hr
  - hu
  - hy
  - id
  - is
  - it
  - ja
  - jv
  - ka
  - kk
  - km
  - kn
  - ko
  - ku
  - ky
  - la
  - lo
  - lt
  - lv
  - mg
  - mk
  - ml
  - mn
  - mr
  - ms
  - my
  - ne
  - nl
  - 'no'
  - om
  - or
  - pa
  - pl
  - ps
  - pt
  - ro
  - ru
  - sa
  - sd
  - si
  - sk
  - sl
  - so
  - sq
  - sr
  - su
  - sv
  - sw
  - ta
  - te
  - th
  - tl
  - tr
  - ug
  - uk
  - ur
  - uz
  - vi
  - xh
  - yi
  - zh
license: mit
tags:
  - mteb
  - Sentence Transformers
  - sentence-similarity
  - sentence-transformers
  - mlx
model-index:
  - name: multilingual-e5-small
    results:
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonCounterfactualClassification (en)
          type: mteb/amazon_counterfactual
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 73.79104477611939
          - type: ap
            value: 36.9996434842022
          - type: f1
            value: 67.95453679103099
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonCounterfactualClassification (de)
          type: mteb/amazon_counterfactual
          config: de
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 71.64882226980728
          - type: ap
            value: 82.11942130026586
          - type: f1
            value: 69.87963421606715
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonCounterfactualClassification (en-ext)
          type: mteb/amazon_counterfactual
          config: en-ext
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 75.8095952023988
          - type: ap
            value: 24.46869495579561
          - type: f1
            value: 63.00108480037597
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonCounterfactualClassification (ja)
          type: mteb/amazon_counterfactual
          config: ja
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 64.186295503212
          - type: ap
            value: 15.496804690197042
          - type: f1
            value: 52.07153895475031
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonPolarityClassification
          type: mteb/amazon_polarity
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 88.699325
          - type: ap
            value: 85.27039559917269
          - type: f1
            value: 88.65556295032513
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (en)
          type: mteb/amazon_reviews_multi
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 44.69799999999999
          - type: f1
            value: 43.73187348654165
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (de)
          type: mteb/amazon_reviews_multi
          config: de
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 40.245999999999995
          - type: f1
            value: 39.3863530637684
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (es)
          type: mteb/amazon_reviews_multi
          config: es
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 40.394
          - type: f1
            value: 39.301223469483446
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (fr)
          type: mteb/amazon_reviews_multi
          config: fr
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 38.864
          - type: f1
            value: 37.97974261868003
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (ja)
          type: mteb/amazon_reviews_multi
          config: ja
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 37.682
          - type: f1
            value: 37.07399369768313
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (zh)
          type: mteb/amazon_reviews_multi
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 37.504
          - type: f1
            value: 36.62317273874278
      - task:
          type: Retrieval
        dataset:
          name: MTEB ArguAna
          type: arguana
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 19.061
          - type: map_at_10
            value: 31.703
          - type: map_at_100
            value: 32.967
          - type: map_at_1000
            value: 33.001000000000005
          - type: map_at_3
            value: 27.466
          - type: map_at_5
            value: 29.564
          - type: mrr_at_1
            value: 19.559
          - type: mrr_at_10
            value: 31.874999999999996
          - type: mrr_at_100
            value: 33.146
          - type: mrr_at_1000
            value: 33.18
          - type: mrr_at_3
            value: 27.667
          - type: mrr_at_5
            value: 29.74
          - type: ndcg_at_1
            value: 19.061
          - type: ndcg_at_10
            value: 39.062999999999995
          - type: ndcg_at_100
            value: 45.184000000000005
          - type: ndcg_at_1000
            value: 46.115
          - type: ndcg_at_3
            value: 30.203000000000003
          - type: ndcg_at_5
            value: 33.953
          - type: precision_at_1
            value: 19.061
          - type: precision_at_10
            value: 6.279999999999999
          - type: precision_at_100
            value: 0.9129999999999999
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 12.706999999999999
          - type: precision_at_5
            value: 9.431000000000001
          - type: recall_at_1
            value: 19.061
          - type: recall_at_10
            value: 62.802
          - type: recall_at_100
            value: 91.323
          - type: recall_at_1000
            value: 98.72
          - type: recall_at_3
            value: 38.122
          - type: recall_at_5
            value: 47.155
      - task:
          type: Clustering
        dataset:
          name: MTEB ArxivClusteringP2P
          type: mteb/arxiv-clustering-p2p
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 39.22266660528253
      - task:
          type: Clustering
        dataset:
          name: MTEB ArxivClusteringS2S
          type: mteb/arxiv-clustering-s2s
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 30.79980849482483
      - task:
          type: Reranking
        dataset:
          name: MTEB AskUbuntuDupQuestions
          type: mteb/askubuntudupquestions-reranking
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 57.8790068352054
          - type: mrr
            value: 71.78791276436706
      - task:
          type: STS
        dataset:
          name: MTEB BIOSSES
          type: mteb/biosses-sts
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 82.36328364043163
          - type: cos_sim_spearman
            value: 82.26211536195868
          - type: euclidean_pearson
            value: 80.3183865039173
          - type: euclidean_spearman
            value: 79.88495276296132
          - type: manhattan_pearson
            value: 80.14484480692127
          - type: manhattan_spearman
            value: 80.39279565980743
      - task:
          type: BitextMining
        dataset:
          name: MTEB BUCC (de-en)
          type: mteb/bucc-bitext-mining
          config: de-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 98.0375782881002
          - type: f1
            value: 97.86012526096033
          - type: precision
            value: 97.77139874739039
          - type: recall
            value: 98.0375782881002
      - task:
          type: BitextMining
        dataset:
          name: MTEB BUCC (fr-en)
          type: mteb/bucc-bitext-mining
          config: fr-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 93.35241030156286
          - type: f1
            value: 92.66050333846944
          - type: precision
            value: 92.3306919069631
          - type: recall
            value: 93.35241030156286
      - task:
          type: BitextMining
        dataset:
          name: MTEB BUCC (ru-en)
          type: mteb/bucc-bitext-mining
          config: ru-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 94.0699688257707
          - type: f1
            value: 93.50236693222492
          - type: precision
            value: 93.22791825424315
          - type: recall
            value: 94.0699688257707
      - task:
          type: BitextMining
        dataset:
          name: MTEB BUCC (zh-en)
          type: mteb/bucc-bitext-mining
          config: zh-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 89.25750394944708
          - type: f1
            value: 88.79234684921889
          - type: precision
            value: 88.57293312269616
          - type: recall
            value: 89.25750394944708
      - task:
          type: Classification
        dataset:
          name: MTEB Banking77Classification
          type: mteb/banking77
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 79.41558441558442
          - type: f1
            value: 79.25886487487219
      - task:
          type: Clustering
        dataset:
          name: MTEB BiorxivClusteringP2P
          type: mteb/biorxiv-clustering-p2p
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 35.747820820329736
      - task:
          type: Clustering
        dataset:
          name: MTEB BiorxivClusteringS2S
          type: mteb/biorxiv-clustering-s2s
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 27.045143830596146
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.252999999999997
          - type: map_at_10
            value: 31.655916666666666
          - type: map_at_100
            value: 32.680749999999996
          - type: map_at_1000
            value: 32.79483333333334
          - type: map_at_3
            value: 29.43691666666666
          - type: map_at_5
            value: 30.717416666666665
          - type: mrr_at_1
            value: 28.602750000000004
          - type: mrr_at_10
            value: 35.56875
          - type: mrr_at_100
            value: 36.3595
          - type: mrr_at_1000
            value: 36.427749999999996
          - type: mrr_at_3
            value: 33.586166666666664
          - type: mrr_at_5
            value: 34.73641666666666
          - type: ndcg_at_1
            value: 28.602750000000004
          - type: ndcg_at_10
            value: 36.06933333333334
          - type: ndcg_at_100
            value: 40.70141666666667
          - type: ndcg_at_1000
            value: 43.24341666666667
          - type: ndcg_at_3
            value: 32.307916666666664
          - type: ndcg_at_5
            value: 34.129999999999995
          - type: precision_at_1
            value: 28.602750000000004
          - type: precision_at_10
            value: 6.097666666666667
          - type: precision_at_100
            value: 0.9809166666666668
          - type: precision_at_1000
            value: 0.13766666666666663
          - type: precision_at_3
            value: 14.628166666666667
          - type: precision_at_5
            value: 10.266916666666667
          - type: recall_at_1
            value: 24.252999999999997
          - type: recall_at_10
            value: 45.31916666666667
          - type: recall_at_100
            value: 66.03575000000001
          - type: recall_at_1000
            value: 83.94708333333334
          - type: recall_at_3
            value: 34.71941666666666
          - type: recall_at_5
            value: 39.46358333333333
      - task:
          type: Retrieval
        dataset:
          name: MTEB ClimateFEVER
          type: climate-fever
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.024000000000001
          - type: map_at_10
            value: 15.644
          - type: map_at_100
            value: 17.154
          - type: map_at_1000
            value: 17.345
          - type: map_at_3
            value: 13.028
          - type: map_at_5
            value: 14.251
          - type: mrr_at_1
            value: 19.674
          - type: mrr_at_10
            value: 29.826999999999998
          - type: mrr_at_100
            value: 30.935000000000002
          - type: mrr_at_1000
            value: 30.987
          - type: mrr_at_3
            value: 26.645000000000003
          - type: mrr_at_5
            value: 28.29
          - type: ndcg_at_1
            value: 19.674
          - type: ndcg_at_10
            value: 22.545
          - type: ndcg_at_100
            value: 29.207
          - type: ndcg_at_1000
            value: 32.912
          - type: ndcg_at_3
            value: 17.952
          - type: ndcg_at_5
            value: 19.363
          - type: precision_at_1
            value: 19.674
          - type: precision_at_10
            value: 7.212000000000001
          - type: precision_at_100
            value: 1.435
          - type: precision_at_1000
            value: 0.212
          - type: precision_at_3
            value: 13.507
          - type: precision_at_5
            value: 10.397
          - type: recall_at_1
            value: 9.024000000000001
          - type: recall_at_10
            value: 28.077999999999996
          - type: recall_at_100
            value: 51.403
          - type: recall_at_1000
            value: 72.406
          - type: recall_at_3
            value: 16.768
          - type: recall_at_5
            value: 20.737
      - task:
          type: Retrieval
        dataset:
          name: MTEB DBPedia
          type: dbpedia-entity
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.012
          - type: map_at_10
            value: 17.138
          - type: map_at_100
            value: 24.146
          - type: map_at_1000
            value: 25.622
          - type: map_at_3
            value: 12.552
          - type: map_at_5
            value: 14.435
          - type: mrr_at_1
            value: 62.25000000000001
          - type: mrr_at_10
            value: 71.186
          - type: mrr_at_100
            value: 71.504
          - type: mrr_at_1000
            value: 71.514
          - type: mrr_at_3
            value: 69.333
          - type: mrr_at_5
            value: 70.408
          - type: ndcg_at_1
            value: 49.75
          - type: ndcg_at_10
            value: 37.76
          - type: ndcg_at_100
            value: 42.071
          - type: ndcg_at_1000
            value: 49.309
          - type: ndcg_at_3
            value: 41.644
          - type: ndcg_at_5
            value: 39.812999999999995
          - type: precision_at_1
            value: 62.25000000000001
          - type: precision_at_10
            value: 30.15
          - type: precision_at_100
            value: 9.753
          - type: precision_at_1000
            value: 1.9189999999999998
          - type: precision_at_3
            value: 45.667
          - type: precision_at_5
            value: 39.15
          - type: recall_at_1
            value: 8.012
          - type: recall_at_10
            value: 22.599
          - type: recall_at_100
            value: 48.068
          - type: recall_at_1000
            value: 71.328
          - type: recall_at_3
            value: 14.043
          - type: recall_at_5
            value: 17.124
      - task:
          type: Classification
        dataset:
          name: MTEB EmotionClassification
          type: mteb/emotion
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 42.455
          - type: f1
            value: 37.59462649781862
      - task:
          type: Retrieval
        dataset:
          name: MTEB FEVER
          type: fever
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 58.092
          - type: map_at_10
            value: 69.586
          - type: map_at_100
            value: 69.968
          - type: map_at_1000
            value: 69.982
          - type: map_at_3
            value: 67.48100000000001
          - type: map_at_5
            value: 68.915
          - type: mrr_at_1
            value: 62.166
          - type: mrr_at_10
            value: 73.588
          - type: mrr_at_100
            value: 73.86399999999999
          - type: mrr_at_1000
            value: 73.868
          - type: mrr_at_3
            value: 71.6
          - type: mrr_at_5
            value: 72.99
          - type: ndcg_at_1
            value: 62.166
          - type: ndcg_at_10
            value: 75.27199999999999
          - type: ndcg_at_100
            value: 76.816
          - type: ndcg_at_1000
            value: 77.09700000000001
          - type: ndcg_at_3
            value: 71.36
          - type: ndcg_at_5
            value: 73.785
          - type: precision_at_1
            value: 62.166
          - type: precision_at_10
            value: 9.716
          - type: precision_at_100
            value: 1.065
          - type: precision_at_1000
            value: 0.11
          - type: precision_at_3
            value: 28.278
          - type: precision_at_5
            value: 18.343999999999998
          - type: recall_at_1
            value: 58.092
          - type: recall_at_10
            value: 88.73400000000001
          - type: recall_at_100
            value: 95.195
          - type: recall_at_1000
            value: 97.04599999999999
          - type: recall_at_3
            value: 78.45
          - type: recall_at_5
            value: 84.316
      - task:
          type: Retrieval
        dataset:
          name: MTEB FiQA2018
          type: fiqa
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 16.649
          - type: map_at_10
            value: 26.457000000000004
          - type: map_at_100
            value: 28.169
          - type: map_at_1000
            value: 28.352
          - type: map_at_3
            value: 23.305
          - type: map_at_5
            value: 25.169000000000004
          - type: mrr_at_1
            value: 32.407000000000004
          - type: mrr_at_10
            value: 40.922
          - type: mrr_at_100
            value: 41.931000000000004
          - type: mrr_at_1000
            value: 41.983
          - type: mrr_at_3
            value: 38.786
          - type: mrr_at_5
            value: 40.205999999999996
          - type: ndcg_at_1
            value: 32.407000000000004
          - type: ndcg_at_10
            value: 33.314
          - type: ndcg_at_100
            value: 40.312
          - type: ndcg_at_1000
            value: 43.685
          - type: ndcg_at_3
            value: 30.391000000000002
          - type: ndcg_at_5
            value: 31.525
          - type: precision_at_1
            value: 32.407000000000004
          - type: precision_at_10
            value: 8.966000000000001
          - type: precision_at_100
            value: 1.6019999999999999
          - type: precision_at_1000
            value: 0.22200000000000003
          - type: precision_at_3
            value: 20.165
          - type: precision_at_5
            value: 14.722
          - type: recall_at_1
            value: 16.649
          - type: recall_at_10
            value: 39.117000000000004
          - type: recall_at_100
            value: 65.726
          - type: recall_at_1000
            value: 85.784
          - type: recall_at_3
            value: 27.914
          - type: recall_at_5
            value: 33.289
      - task:
          type: Retrieval
        dataset:
          name: MTEB HotpotQA
          type: hotpotqa
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 36.253
          - type: map_at_10
            value: 56.16799999999999
          - type: map_at_100
            value: 57.06099999999999
          - type: map_at_1000
            value: 57.126
          - type: map_at_3
            value: 52.644999999999996
          - type: map_at_5
            value: 54.909
          - type: mrr_at_1
            value: 72.505
          - type: mrr_at_10
            value: 79.66
          - type: mrr_at_100
            value: 79.869
          - type: mrr_at_1000
            value: 79.88
          - type: mrr_at_3
            value: 78.411
          - type: mrr_at_5
            value: 79.19800000000001
          - type: ndcg_at_1
            value: 72.505
          - type: ndcg_at_10
            value: 65.094
          - type: ndcg_at_100
            value: 68.219
          - type: ndcg_at_1000
            value: 69.515
          - type: ndcg_at_3
            value: 59.99
          - type: ndcg_at_5
            value: 62.909000000000006
          - type: precision_at_1
            value: 72.505
          - type: precision_at_10
            value: 13.749
          - type: precision_at_100
            value: 1.619
          - type: precision_at_1000
            value: 0.179
          - type: precision_at_3
            value: 38.357
          - type: precision_at_5
            value: 25.313000000000002
          - type: recall_at_1
            value: 36.253
          - type: recall_at_10
            value: 68.744
          - type: recall_at_100
            value: 80.925
          - type: recall_at_1000
            value: 89.534
          - type: recall_at_3
            value: 57.535000000000004
          - type: recall_at_5
            value: 63.282000000000004
      - task:
          type: Classification
        dataset:
          name: MTEB ImdbClassification
          type: mteb/imdb
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 80.82239999999999
          - type: ap
            value: 75.65895781725314
          - type: f1
            value: 80.75880969095746
      - task:
          type: Retrieval
        dataset:
          name: MTEB MSMARCO
          type: msmarco
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 21.624
          - type: map_at_10
            value: 34.075
          - type: map_at_100
            value: 35.229
          - type: map_at_1000
            value: 35.276999999999994
          - type: map_at_3
            value: 30.245
          - type: map_at_5
            value: 32.42
          - type: mrr_at_1
            value: 22.264
          - type: mrr_at_10
            value: 34.638000000000005
          - type: mrr_at_100
            value: 35.744
          - type: mrr_at_1000
            value: 35.787
          - type: mrr_at_3
            value: 30.891000000000002
          - type: mrr_at_5
            value: 33.042
          - type: ndcg_at_1
            value: 22.264
          - type: ndcg_at_10
            value: 40.991
          - type: ndcg_at_100
            value: 46.563
          - type: ndcg_at_1000
            value: 47.743
          - type: ndcg_at_3
            value: 33.198
          - type: ndcg_at_5
            value: 37.069
          - type: precision_at_1
            value: 22.264
          - type: precision_at_10
            value: 6.5089999999999995
          - type: precision_at_100
            value: 0.9299999999999999
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 14.216999999999999
          - type: precision_at_5
            value: 10.487
          - type: recall_at_1
            value: 21.624
          - type: recall_at_10
            value: 62.303
          - type: recall_at_100
            value: 88.124
          - type: recall_at_1000
            value: 97.08
          - type: recall_at_3
            value: 41.099999999999994
          - type: recall_at_5
            value: 50.381
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (en)
          type: mteb/mtop_domain
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 91.06703146374831
          - type: f1
            value: 90.86867815863172
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (de)
          type: mteb/mtop_domain
          config: de
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 87.46970977740209
          - type: f1
            value: 86.36832872036588
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (es)
          type: mteb/mtop_domain
          config: es
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 89.26951300867245
          - type: f1
            value: 88.93561193959502
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (fr)
          type: mteb/mtop_domain
          config: fr
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 84.22799874725963
          - type: f1
            value: 84.30490069236556
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (hi)
          type: mteb/mtop_domain
          config: hi
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 86.02007888131948
          - type: f1
            value: 85.39376041027991
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (th)
          type: mteb/mtop_domain
          config: th
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 85.34900542495481
          - type: f1
            value: 85.39859673336713
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (en)
          type: mteb/mtop_intent
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 71.078431372549
          - type: f1
            value: 53.45071102002276
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (de)
          type: mteb/mtop_intent
          config: de
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 65.85798816568047
          - type: f1
            value: 46.53112748993529
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (es)
          type: mteb/mtop_intent
          config: es
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 67.96864576384256
          - type: f1
            value: 45.966703022829506
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (fr)
          type: mteb/mtop_intent
          config: fr
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 61.31537738803633
          - type: f1
            value: 45.52601712835461
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (hi)
          type: mteb/mtop_intent
          config: hi
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 66.29616349946218
          - type: f1
            value: 47.24166485726613
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (th)
          type: mteb/mtop_intent
          config: th
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 67.51537070524412
          - type: f1
            value: 49.463476319014276
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (af)
          type: mteb/amazon_massive_intent
          config: af
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 57.06792199058508
          - type: f1
            value: 54.094921857502285
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (am)
          type: mteb/amazon_massive_intent
          config: am
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 51.960322797579025
          - type: f1
            value: 48.547371223370945
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ar)
          type: mteb/amazon_massive_intent
          config: ar
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 54.425016812373904
          - type: f1
            value: 50.47069202054312
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (az)
          type: mteb/amazon_massive_intent
          config: az
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 59.798251513113655
          - type: f1
            value: 57.05013069086648
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (bn)
          type: mteb/amazon_massive_intent
          config: bn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 59.37794216543376
          - type: f1
            value: 56.3607992649805
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (cy)
          type: mteb/amazon_massive_intent
          config: cy
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 46.56018829858777
          - type: f1
            value: 43.87319715715134
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (da)
          type: mteb/amazon_massive_intent
          config: da
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 62.9724277067922
          - type: f1
            value: 59.36480066245562
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (de)
          type: mteb/amazon_massive_intent
          config: de
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 62.72696704774715
          - type: f1
            value: 59.143595966615855
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (el)
          type: mteb/amazon_massive_intent
          config: el
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 61.5971755211836
          - type: f1
            value: 59.169445724946726
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (en)
          type: mteb/amazon_massive_intent
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 70.29589778076665
          - type: f1
            value: 67.7577001808977
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (es)
          type: mteb/amazon_massive_intent
          config: es
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 66.31136516476126
          - type: f1
            value: 64.52032955983242
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (fa)
          type: mteb/amazon_massive_intent
          config: fa
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 65.54472091459314
          - type: f1
            value: 61.47903120066317
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (fi)
          type: mteb/amazon_massive_intent
          config: fi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 61.45595158036314
          - type: f1
            value: 58.0891846024637
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (fr)
          type: mteb/amazon_massive_intent
          config: fr
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 65.47074646940149
          - type: f1
            value: 62.84830858877575
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (he)
          type: mteb/amazon_massive_intent
          config: he
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 58.046402151983855
          - type: f1
            value: 55.269074430533195
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (hi)
          type: mteb/amazon_massive_intent
          config: hi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 64.06523201075991
          - type: f1
            value: 61.35339643021369
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (hu)
          type: mteb/amazon_massive_intent
          config: hu
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 60.954942837928726
          - type: f1
            value: 57.07035922704846
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (hy)
          type: mteb/amazon_massive_intent
          config: hy
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 57.404169468728995
          - type: f1
            value: 53.94259011839138
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (id)
          type: mteb/amazon_massive_intent
          config: id
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 64.16610625420309
          - type: f1
            value: 61.337103431499365
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (is)
          type: mteb/amazon_massive_intent
          config: is
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 52.262945527908535
          - type: f1
            value: 49.7610691598921
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (it)
          type: mteb/amazon_massive_intent
          config: it
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 65.54472091459314
          - type: f1
            value: 63.469099018440154
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ja)
          type: mteb/amazon_massive_intent
          config: ja
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 68.22797579018157
          - type: f1
            value: 64.89098471083001
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (jv)
          type: mteb/amazon_massive_intent
          config: jv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 50.847343644922674
          - type: f1
            value: 47.8536963168393
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ka)
          type: mteb/amazon_massive_intent
          config: ka
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 48.45326160053799
          - type: f1
            value: 46.370078045805556
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (km)
          type: mteb/amazon_massive_intent
          config: km
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 42.83120376597175
          - type: f1
            value: 39.68948521599982
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (kn)
          type: mteb/amazon_massive_intent
          config: kn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 57.5084061869536
          - type: f1
            value: 53.961876160401545
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ko)
          type: mteb/amazon_massive_intent
          config: ko
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 63.7895090786819
          - type: f1
            value: 61.134223684676
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (lv)
          type: mteb/amazon_massive_intent
          config: lv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 54.98991257565569
          - type: f1
            value: 52.579862862826296
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ml)
          type: mteb/amazon_massive_intent
          config: ml
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 61.90316072629456
          - type: f1
            value: 58.203024538290336
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (mn)
          type: mteb/amazon_massive_intent
          config: mn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 57.09818426361802
          - type: f1
            value: 54.22718458445455
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ms)
          type: mteb/amazon_massive_intent
          config: ms
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 58.991257565568255
          - type: f1
            value: 55.84892781767421
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (my)
          type: mteb/amazon_massive_intent
          config: my
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 55.901143241425686
          - type: f1
            value: 52.25264332199797
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (nb)
          type: mteb/amazon_massive_intent
          config: nb
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 61.96368527236047
          - type: f1
            value: 58.927243876153454
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (nl)
          type: mteb/amazon_massive_intent
          config: nl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 65.64223268325489
          - type: f1
            value: 62.340453718379706
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (pl)
          type: mteb/amazon_massive_intent
          config: pl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 64.52589105581708
          - type: f1
            value: 61.661113187022174
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (pt)
          type: mteb/amazon_massive_intent
          config: pt
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 66.84599865501009
          - type: f1
            value: 64.59342572873005
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ro)
          type: mteb/amazon_massive_intent
          config: ro
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 60.81035642232684
          - type: f1
            value: 57.5169089806797
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ru)
          type: mteb/amazon_massive_intent
          config: ru
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 65.75991930060525
          - type: f1
            value: 62.89531115787938
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (sl)
          type: mteb/amazon_massive_intent
          config: sl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 56.51647612642906
          - type: f1
            value: 54.33154780100043
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (sq)
          type: mteb/amazon_massive_intent
          config: sq
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 57.985877605917956
          - type: f1
            value: 54.46187524463802
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (sv)
          type: mteb/amazon_massive_intent
          config: sv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 65.03026227303296
          - type: f1
            value: 62.34377392877748
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (sw)
          type: mteb/amazon_massive_intent
          config: sw
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 53.567585743106925
          - type: f1
            value: 50.73770655983206
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ta)
          type: mteb/amazon_massive_intent
          config: ta
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 57.2595830531271
          - type: f1
            value: 53.657327291708626
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (te)
          type: mteb/amazon_massive_intent
          config: te
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 57.82784129119032
          - type: f1
            value: 54.82518072665301
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (th)
          type: mteb/amazon_massive_intent
          config: th
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 64.06859448554137
          - type: f1
            value: 63.00185280500495
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (tl)
          type: mteb/amazon_massive_intent
          config: tl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 58.91055817081371
          - type: f1
            value: 55.54116301224262
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (tr)
          type: mteb/amazon_massive_intent
          config: tr
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 63.54404841963686
          - type: f1
            value: 59.57650946030184
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ur)
          type: mteb/amazon_massive_intent
          config: ur
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 59.27706792199059
          - type: f1
            value: 56.50010066083435
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (vi)
          type: mteb/amazon_massive_intent
          config: vi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 64.0719569603228
          - type: f1
            value: 61.817075925647956
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (zh-CN)
          type: mteb/amazon_massive_intent
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 68.23806321452591
          - type: f1
            value: 65.24917026029749
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (zh-TW)
          type: mteb/amazon_massive_intent
          config: zh-TW
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 62.53530598520511
          - type: f1
            value: 61.71131132295768
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (af)
          type: mteb/amazon_massive_scenario
          config: af
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 63.04303967720243
          - type: f1
            value: 60.3950085685985
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (am)
          type: mteb/amazon_massive_scenario
          config: am
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 56.83591123066578
          - type: f1
            value: 54.95059828830849
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ar)
          type: mteb/amazon_massive_scenario
          config: ar
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 59.62340282447881
          - type: f1
            value: 59.525159996498225
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (az)
          type: mteb/amazon_massive_scenario
          config: az
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 60.85406859448555
          - type: f1
            value: 59.129299095681276
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (bn)
          type: mteb/amazon_massive_scenario
          config: bn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 62.76731674512441
          - type: f1
            value: 61.159560612627715
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (cy)
          type: mteb/amazon_massive_scenario
          config: cy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 50.181573638197705
          - type: f1
            value: 46.98422176289957
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (da)
          type: mteb/amazon_massive_scenario
          config: da
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 68.92737054472092
          - type: f1
            value: 67.69135611952979
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (de)
          type: mteb/amazon_massive_scenario
          config: de
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 69.18964357767318
          - type: f1
            value: 68.46106138186214
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (el)
          type: mteb/amazon_massive_scenario
          config: el
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 67.0712844653665
          - type: f1
            value: 66.75545422473901
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (en)
          type: mteb/amazon_massive_scenario
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 74.4754539340955
          - type: f1
            value: 74.38427146553252
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (es)
          type: mteb/amazon_massive_scenario
          config: es
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 69.82515131136518
          - type: f1
            value: 69.63516462173847
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (fa)
          type: mteb/amazon_massive_scenario
          config: fa
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 68.70880968392737
          - type: f1
            value: 67.45420662567926
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (fi)
          type: mteb/amazon_massive_scenario
          config: fi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 65.95494283792871
          - type: f1
            value: 65.06191009049222
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (fr)
          type: mteb/amazon_massive_scenario
          config: fr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 68.75924680564896
          - type: f1
            value: 68.30833379585945
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (he)
          type: mteb/amazon_massive_scenario
          config: he
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 63.806321452589096
          - type: f1
            value: 63.273048243765054
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (hi)
          type: mteb/amazon_massive_scenario
          config: hi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 67.68997982515133
          - type: f1
            value: 66.54703855381324
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (hu)
          type: mteb/amazon_massive_scenario
          config: hu
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 66.46940147948891
          - type: f1
            value: 65.91017343463396
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (hy)
          type: mteb/amazon_massive_scenario
          config: hy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 59.49899125756556
          - type: f1
            value: 57.90333469917769
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (id)
          type: mteb/amazon_massive_scenario
          config: id
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 67.9219905850706
          - type: f1
            value: 67.23169403762938
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (is)
          type: mteb/amazon_massive_scenario
          config: is
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 56.486213853396094
          - type: f1
            value: 54.85282355583758
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (it)
          type: mteb/amazon_massive_scenario
          config: it
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 69.04169468728985
          - type: f1
            value: 68.83833333320462
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ja)
          type: mteb/amazon_massive_scenario
          config: ja
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.88702084734365
          - type: f1
            value: 74.04474735232299
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (jv)
          type: mteb/amazon_massive_scenario
          config: jv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 56.63416274377943
          - type: f1
            value: 55.11332211687954
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ka)
          type: mteb/amazon_massive_scenario
          config: ka
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 52.23604572965702
          - type: f1
            value: 50.86529813991055
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (km)
          type: mteb/amazon_massive_scenario
          config: km
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 46.62407531943511
          - type: f1
            value: 43.63485467164535
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (kn)
          type: mteb/amazon_massive_scenario
          config: kn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 59.15601882985878
          - type: f1
            value: 57.522837510959924
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ko)
          type: mteb/amazon_massive_scenario
          config: ko
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 69.84532616005382
          - type: f1
            value: 69.60021127179697
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (lv)
          type: mteb/amazon_massive_scenario
          config: lv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 56.65770006724949
          - type: f1
            value: 55.84219135523227
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ml)
          type: mteb/amazon_massive_scenario
          config: ml
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 66.53665097511768
          - type: f1
            value: 65.09087787792639
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (mn)
          type: mteb/amazon_massive_scenario
          config: mn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 59.31405514458642
          - type: f1
            value: 58.06135303831491
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ms)
          type: mteb/amazon_massive_scenario
          config: ms
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 64.88231338264964
          - type: f1
            value: 62.751099407787926
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (my)
          type: mteb/amazon_massive_scenario
          config: my
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 58.86012104909213
          - type: f1
            value: 56.29118323058282
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (nb)
          type: mteb/amazon_massive_scenario
          config: nb
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 67.37390719569602
          - type: f1
            value: 66.27922244885102
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (nl)
          type: mteb/amazon_massive_scenario
          config: nl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.8675184936113
          - type: f1
            value: 70.22146529932019
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (pl)
          type: mteb/amazon_massive_scenario
          config: pl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 68.2212508406187
          - type: f1
            value: 67.77454802056282
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (pt)
          type: mteb/amazon_massive_scenario
          config: pt
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 68.18090114324143
          - type: f1
            value: 68.03737625431621
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ro)
          type: mteb/amazon_massive_scenario
          config: ro
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 64.65030262273034
          - type: f1
            value: 63.792945486912856
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ru)
          type: mteb/amazon_massive_scenario
          config: ru
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 69.48217888365838
          - type: f1
            value: 69.96028997292197
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (sl)
          type: mteb/amazon_massive_scenario
          config: sl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 60.17821116341627
          - type: f1
            value: 59.3935969827171
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (sq)
          type: mteb/amazon_massive_scenario
          config: sq
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 62.86146603900471
          - type: f1
            value: 60.133692735032376
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (sv)
          type: mteb/amazon_massive_scenario
          config: sv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.89441829186282
          - type: f1
            value: 70.03064076194089
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (sw)
          type: mteb/amazon_massive_scenario
          config: sw
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 58.15063887020847
          - type: f1
            value: 56.23326278499678
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ta)
          type: mteb/amazon_massive_scenario
          config: ta
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 59.43846671149966
          - type: f1
            value: 57.70440450281974
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (te)
          type: mteb/amazon_massive_scenario
          config: te
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 60.8507061197041
          - type: f1
            value: 59.22916396061171
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (th)
          type: mteb/amazon_massive_scenario
          config: th
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.65568258238063
          - type: f1
            value: 69.90736239440633
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (tl)
          type: mteb/amazon_massive_scenario
          config: tl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 60.8843308675185
          - type: f1
            value: 59.30332663713599
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (tr)
          type: mteb/amazon_massive_scenario
          config: tr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 68.05312710154674
          - type: f1
            value: 67.44024062594775
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ur)
          type: mteb/amazon_massive_scenario
          config: ur
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 62.111634162743776
          - type: f1
            value: 60.89083013084519
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (vi)
          type: mteb/amazon_massive_scenario
          config: vi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 67.44115669132482
          - type: f1
            value: 67.92227541674552
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (zh-CN)
          type: mteb/amazon_massive_scenario
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 74.4687289845326
          - type: f1
            value: 74.16376793486025
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (zh-TW)
          type: mteb/amazon_massive_scenario
          config: zh-TW
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 68.31876260928043
          - type: f1
            value: 68.5246745215607
      - task:
          type: Clustering
        dataset:
          name: MTEB MedrxivClusteringP2P
          type: mteb/medrxiv-clustering-p2p
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 30.90431696479766
      - task:
          type: Clustering
        dataset:
          name: MTEB MedrxivClusteringS2S
          type: mteb/medrxiv-clustering-s2s
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 27.259158476693774
      - task:
          type: Reranking
        dataset:
          name: MTEB MindSmallReranking
          type: mteb/mind_small
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 30.28445330838555
          - type: mrr
            value: 31.15758529581164
      - task:
          type: Retrieval
        dataset:
          name: MTEB NFCorpus
          type: nfcorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.353
          - type: map_at_10
            value: 11.565
          - type: map_at_100
            value: 14.097000000000001
          - type: map_at_1000
            value: 15.354999999999999
          - type: map_at_3
            value: 8.749
          - type: map_at_5
            value: 9.974
          - type: mrr_at_1
            value: 42.105
          - type: mrr_at_10
            value: 50.589
          - type: mrr_at_100
            value: 51.187000000000005
          - type: mrr_at_1000
            value: 51.233
          - type: mrr_at_3
            value: 48.246
          - type: mrr_at_5
            value: 49.546
          - type: ndcg_at_1
            value: 40.402
          - type: ndcg_at_10
            value: 31.009999999999998
          - type: ndcg_at_100
            value: 28.026
          - type: ndcg_at_1000
            value: 36.905
          - type: ndcg_at_3
            value: 35.983
          - type: ndcg_at_5
            value: 33.764
          - type: precision_at_1
            value: 42.105
          - type: precision_at_10
            value: 22.786
          - type: precision_at_100
            value: 6.916
          - type: precision_at_1000
            value: 1.981
          - type: precision_at_3
            value: 33.333
          - type: precision_at_5
            value: 28.731
          - type: recall_at_1
            value: 5.353
          - type: recall_at_10
            value: 15.039
          - type: recall_at_100
            value: 27.348
          - type: recall_at_1000
            value: 59.453
          - type: recall_at_3
            value: 9.792
          - type: recall_at_5
            value: 11.882
      - task:
          type: Retrieval
        dataset:
          name: MTEB NQ
          type: nq
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 33.852
          - type: map_at_10
            value: 48.924
          - type: map_at_100
            value: 49.854
          - type: map_at_1000
            value: 49.886
          - type: map_at_3
            value: 44.9
          - type: map_at_5
            value: 47.387
          - type: mrr_at_1
            value: 38.035999999999994
          - type: mrr_at_10
            value: 51.644
          - type: mrr_at_100
            value: 52.339
          - type: mrr_at_1000
            value: 52.35999999999999
          - type: mrr_at_3
            value: 48.421
          - type: mrr_at_5
            value: 50.468999999999994
          - type: ndcg_at_1
            value: 38.007000000000005
          - type: ndcg_at_10
            value: 56.293000000000006
          - type: ndcg_at_100
            value: 60.167
          - type: ndcg_at_1000
            value: 60.916000000000004
          - type: ndcg_at_3
            value: 48.903999999999996
          - type: ndcg_at_5
            value: 52.978
          - type: precision_at_1
            value: 38.007000000000005
          - type: precision_at_10
            value: 9.041
          - type: precision_at_100
            value: 1.1199999999999999
          - type: precision_at_1000
            value: 0.11900000000000001
          - type: precision_at_3
            value: 22.084
          - type: precision_at_5
            value: 15.608
          - type: recall_at_1
            value: 33.852
          - type: recall_at_10
            value: 75.893
          - type: recall_at_100
            value: 92.589
          - type: recall_at_1000
            value: 98.153
          - type: recall_at_3
            value: 56.969
          - type: recall_at_5
            value: 66.283
      - task:
          type: Retrieval
        dataset:
          name: MTEB QuoraRetrieval
          type: quora
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 69.174
          - type: map_at_10
            value: 82.891
          - type: map_at_100
            value: 83.545
          - type: map_at_1000
            value: 83.56700000000001
          - type: map_at_3
            value: 79.944
          - type: map_at_5
            value: 81.812
          - type: mrr_at_1
            value: 79.67999999999999
          - type: mrr_at_10
            value: 86.279
          - type: mrr_at_100
            value: 86.39
          - type: mrr_at_1000
            value: 86.392
          - type: mrr_at_3
            value: 85.21
          - type: mrr_at_5
            value: 85.92999999999999
          - type: ndcg_at_1
            value: 79.69000000000001
          - type: ndcg_at_10
            value: 86.929
          - type: ndcg_at_100
            value: 88.266
          - type: ndcg_at_1000
            value: 88.428
          - type: ndcg_at_3
            value: 83.899
          - type: ndcg_at_5
            value: 85.56700000000001
          - type: precision_at_1
            value: 79.69000000000001
          - type: precision_at_10
            value: 13.161000000000001
          - type: precision_at_100
            value: 1.513
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 36.603
          - type: precision_at_5
            value: 24.138
          - type: recall_at_1
            value: 69.174
          - type: recall_at_10
            value: 94.529
          - type: recall_at_100
            value: 99.15
          - type: recall_at_1000
            value: 99.925
          - type: recall_at_3
            value: 85.86200000000001
          - type: recall_at_5
            value: 90.501
      - task:
          type: Clustering
        dataset:
          name: MTEB RedditClustering
          type: mteb/reddit-clustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 39.13064340585255
      - task:
          type: Clustering
        dataset:
          name: MTEB RedditClusteringP2P
          type: mteb/reddit-clustering-p2p
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 58.97884249325877
      - task:
          type: Retrieval
        dataset:
          name: MTEB SCIDOCS
          type: scidocs
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.4680000000000004
          - type: map_at_10
            value: 7.865
          - type: map_at_100
            value: 9.332
          - type: map_at_1000
            value: 9.587
          - type: map_at_3
            value: 5.800000000000001
          - type: map_at_5
            value: 6.8790000000000004
          - type: mrr_at_1
            value: 17
          - type: mrr_at_10
            value: 25.629
          - type: mrr_at_100
            value: 26.806
          - type: mrr_at_1000
            value: 26.889000000000003
          - type: mrr_at_3
            value: 22.8
          - type: mrr_at_5
            value: 24.26
          - type: ndcg_at_1
            value: 17
          - type: ndcg_at_10
            value: 13.895
          - type: ndcg_at_100
            value: 20.491999999999997
          - type: ndcg_at_1000
            value: 25.759999999999998
          - type: ndcg_at_3
            value: 13.347999999999999
          - type: ndcg_at_5
            value: 11.61
          - type: precision_at_1
            value: 17
          - type: precision_at_10
            value: 7.090000000000001
          - type: precision_at_100
            value: 1.669
          - type: precision_at_1000
            value: 0.294
          - type: precision_at_3
            value: 12.3
          - type: precision_at_5
            value: 10.02
          - type: recall_at_1
            value: 3.4680000000000004
          - type: recall_at_10
            value: 14.363000000000001
          - type: recall_at_100
            value: 33.875
          - type: recall_at_1000
            value: 59.711999999999996
          - type: recall_at_3
            value: 7.483
          - type: recall_at_5
            value: 10.173
      - task:
          type: STS
        dataset:
          name: MTEB SICK-R
          type: mteb/sickr-sts
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 83.04084311714061
          - type: cos_sim_spearman
            value: 77.51342467443078
          - type: euclidean_pearson
            value: 80.0321166028479
          - type: euclidean_spearman
            value: 77.29249114733226
          - type: manhattan_pearson
            value: 80.03105964262431
          - type: manhattan_spearman
            value: 77.22373689514794
      - task:
          type: STS
        dataset:
          name: MTEB STS12
          type: mteb/sts12-sts
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 84.1680158034387
          - type: cos_sim_spearman
            value: 76.55983344071117
          - type: euclidean_pearson
            value: 79.75266678300143
          - type: euclidean_spearman
            value: 75.34516823467025
          - type: manhattan_pearson
            value: 79.75959151517357
          - type: manhattan_spearman
            value: 75.42330344141912
      - task:
          type: STS
        dataset:
          name: MTEB STS13
          type: mteb/sts13-sts
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 76.48898993209346
          - type: cos_sim_spearman
            value: 76.96954120323366
          - type: euclidean_pearson
            value: 76.94139109279668
          - type: euclidean_spearman
            value: 76.85860283201711
          - type: manhattan_pearson
            value: 76.6944095091912
          - type: manhattan_spearman
            value: 76.61096912972553
      - task:
          type: STS
        dataset:
          name: MTEB STS14
          type: mteb/sts14-sts
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 77.85082366246944
          - type: cos_sim_spearman
            value: 75.52053350101731
          - type: euclidean_pearson
            value: 77.1165845070926
          - type: euclidean_spearman
            value: 75.31216065884388
          - type: manhattan_pearson
            value: 77.06193941833494
          - type: manhattan_spearman
            value: 75.31003701700112
      - task:
          type: STS
        dataset:
          name: MTEB STS15
          type: mteb/sts15-sts
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 86.36305246526497
          - type: cos_sim_spearman
            value: 87.11704613927415
          - type: euclidean_pearson
            value: 86.04199125810939
          - type: euclidean_spearman
            value: 86.51117572414263
          - type: manhattan_pearson
            value: 86.0805106816633
          - type: manhattan_spearman
            value: 86.52798366512229
      - task:
          type: STS
        dataset:
          name: MTEB STS16
          type: mteb/sts16-sts
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 82.18536255599724
          - type: cos_sim_spearman
            value: 83.63377151025418
          - type: euclidean_pearson
            value: 83.24657467993141
          - type: euclidean_spearman
            value: 84.02751481993825
          - type: manhattan_pearson
            value: 83.11941806582371
          - type: manhattan_spearman
            value: 83.84251281019304
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (ko-ko)
          type: mteb/sts17-crosslingual-sts
          config: ko-ko
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 78.95816528475514
          - type: cos_sim_spearman
            value: 78.86607380120462
          - type: euclidean_pearson
            value: 78.51268699230545
          - type: euclidean_spearman
            value: 79.11649316502229
          - type: manhattan_pearson
            value: 78.32367302808157
          - type: manhattan_spearman
            value: 78.90277699624637
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (ar-ar)
          type: mteb/sts17-crosslingual-sts
          config: ar-ar
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 72.89126914997624
          - type: cos_sim_spearman
            value: 73.0296921832678
          - type: euclidean_pearson
            value: 71.50385903677738
          - type: euclidean_spearman
            value: 73.13368899716289
          - type: manhattan_pearson
            value: 71.47421463379519
          - type: manhattan_spearman
            value: 73.03383242946575
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (en-ar)
          type: mteb/sts17-crosslingual-sts
          config: en-ar
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 59.22923684492637
          - type: cos_sim_spearman
            value: 57.41013211368396
          - type: euclidean_pearson
            value: 61.21107388080905
          - type: euclidean_spearman
            value: 60.07620768697254
          - type: manhattan_pearson
            value: 59.60157142786555
          - type: manhattan_spearman
            value: 59.14069604103739
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (en-de)
          type: mteb/sts17-crosslingual-sts
          config: en-de
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 76.24345978774299
          - type: cos_sim_spearman
            value: 77.24225743830719
          - type: euclidean_pearson
            value: 76.66226095469165
          - type: euclidean_spearman
            value: 77.60708820493146
          - type: manhattan_pearson
            value: 76.05303324760429
          - type: manhattan_spearman
            value: 76.96353149912348
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (en-en)
          type: mteb/sts17-crosslingual-sts
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 85.50879160160852
          - type: cos_sim_spearman
            value: 86.43594662965224
          - type: euclidean_pearson
            value: 86.06846012826577
          - type: euclidean_spearman
            value: 86.02041395794136
          - type: manhattan_pearson
            value: 86.10916255616904
          - type: manhattan_spearman
            value: 86.07346068198953
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (en-tr)
          type: mteb/sts17-crosslingual-sts
          config: en-tr
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 58.39803698977196
          - type: cos_sim_spearman
            value: 55.96910950423142
          - type: euclidean_pearson
            value: 58.17941175613059
          - type: euclidean_spearman
            value: 55.03019330522745
          - type: manhattan_pearson
            value: 57.333358138183286
          - type: manhattan_spearman
            value: 54.04614023149965
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (es-en)
          type: mteb/sts17-crosslingual-sts
          config: es-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 70.98304089637197
          - type: cos_sim_spearman
            value: 72.44071656215888
          - type: euclidean_pearson
            value: 72.19224359033983
          - type: euclidean_spearman
            value: 73.89871188913025
          - type: manhattan_pearson
            value: 71.21098311547406
          - type: manhattan_spearman
            value: 72.93405764824821
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (es-es)
          type: mteb/sts17-crosslingual-sts
          config: es-es
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 85.99792397466308
          - type: cos_sim_spearman
            value: 84.83824377879495
          - type: euclidean_pearson
            value: 85.70043288694438
          - type: euclidean_spearman
            value: 84.70627558703686
          - type: manhattan_pearson
            value: 85.89570850150801
          - type: manhattan_spearman
            value: 84.95806105313007
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (fr-en)
          type: mteb/sts17-crosslingual-sts
          config: fr-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 72.21850322994712
          - type: cos_sim_spearman
            value: 72.28669398117248
          - type: euclidean_pearson
            value: 73.40082510412948
          - type: euclidean_spearman
            value: 73.0326539281865
          - type: manhattan_pearson
            value: 71.8659633964841
          - type: manhattan_spearman
            value: 71.57817425823303
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (it-en)
          type: mteb/sts17-crosslingual-sts
          config: it-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 75.80921368595645
          - type: cos_sim_spearman
            value: 77.33209091229315
          - type: euclidean_pearson
            value: 76.53159540154829
          - type: euclidean_spearman
            value: 78.17960842810093
          - type: manhattan_pearson
            value: 76.13530186637601
          - type: manhattan_spearman
            value: 78.00701437666875
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (nl-en)
          type: mteb/sts17-crosslingual-sts
          config: nl-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 74.74980608267349
          - type: cos_sim_spearman
            value: 75.37597374318821
          - type: euclidean_pearson
            value: 74.90506081911661
          - type: euclidean_spearman
            value: 75.30151613124521
          - type: manhattan_pearson
            value: 74.62642745918002
          - type: manhattan_spearman
            value: 75.18619716592303
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (en)
          type: mteb/sts22-crosslingual-sts
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 59.632662289205584
          - type: cos_sim_spearman
            value: 60.938543391610914
          - type: euclidean_pearson
            value: 62.113200529767056
          - type: euclidean_spearman
            value: 61.410312633261164
          - type: manhattan_pearson
            value: 61.75494698945686
          - type: manhattan_spearman
            value: 60.92726195322362
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (de)
          type: mteb/sts22-crosslingual-sts
          config: de
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 45.283470551557244
          - type: cos_sim_spearman
            value: 53.44833015864201
          - type: euclidean_pearson
            value: 41.17892011120893
          - type: euclidean_spearman
            value: 53.81441383126767
          - type: manhattan_pearson
            value: 41.17482200420659
          - type: manhattan_spearman
            value: 53.82180269276363
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (es)
          type: mteb/sts22-crosslingual-sts
          config: es
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 60.5069165306236
          - type: cos_sim_spearman
            value: 66.87803259033826
          - type: euclidean_pearson
            value: 63.5428979418236
          - type: euclidean_spearman
            value: 66.9293576586897
          - type: manhattan_pearson
            value: 63.59789526178922
          - type: manhattan_spearman
            value: 66.86555009875066
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (pl)
          type: mteb/sts22-crosslingual-sts
          config: pl
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 28.23026196280264
          - type: cos_sim_spearman
            value: 35.79397812652861
          - type: euclidean_pearson
            value: 17.828102102767353
          - type: euclidean_spearman
            value: 35.721501145568894
          - type: manhattan_pearson
            value: 17.77134274219677
          - type: manhattan_spearman
            value: 35.98107902846267
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (tr)
          type: mteb/sts22-crosslingual-sts
          config: tr
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 56.51946541393812
          - type: cos_sim_spearman
            value: 63.714686006214485
          - type: euclidean_pearson
            value: 58.32104651305898
          - type: euclidean_spearman
            value: 62.237110895702216
          - type: manhattan_pearson
            value: 58.579416468759185
          - type: manhattan_spearman
            value: 62.459738981727
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (ar)
          type: mteb/sts22-crosslingual-sts
          config: ar
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 48.76009839569795
          - type: cos_sim_spearman
            value: 56.65188431953149
          - type: euclidean_pearson
            value: 50.997682160915595
          - type: euclidean_spearman
            value: 55.99910008818135
          - type: manhattan_pearson
            value: 50.76220659606342
          - type: manhattan_spearman
            value: 55.517347595391456
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (ru)
          type: mteb/sts22-crosslingual-sts
          config: ru
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 51.232731157702425
          - type: cos_sim_spearman
            value: 59.89531877658345
          - type: euclidean_pearson
            value: 49.937914570348376
          - type: euclidean_spearman
            value: 60.220905659334036
          - type: manhattan_pearson
            value: 50.00987996844193
          - type: manhattan_spearman
            value: 60.081341480977926
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (zh)
          type: mteb/sts22-crosslingual-sts
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 54.717524559088005
          - type: cos_sim_spearman
            value: 66.83570886252286
          - type: euclidean_pearson
            value: 58.41338625505467
          - type: euclidean_spearman
            value: 66.68991427704938
          - type: manhattan_pearson
            value: 58.78638572916807
          - type: manhattan_spearman
            value: 66.58684161046335
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (fr)
          type: mteb/sts22-crosslingual-sts
          config: fr
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 73.2962042954962
          - type: cos_sim_spearman
            value: 76.58255504852025
          - type: euclidean_pearson
            value: 75.70983192778257
          - type: euclidean_spearman
            value: 77.4547684870542
          - type: manhattan_pearson
            value: 75.75565853870485
          - type: manhattan_spearman
            value: 76.90208974949428
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (de-en)
          type: mteb/sts22-crosslingual-sts
          config: de-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 54.47396266924846
          - type: cos_sim_spearman
            value: 56.492267162048606
          - type: euclidean_pearson
            value: 55.998505203070195
          - type: euclidean_spearman
            value: 56.46447012960222
          - type: manhattan_pearson
            value: 54.873172394430995
          - type: manhattan_spearman
            value: 56.58111534551218
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (es-en)
          type: mteb/sts22-crosslingual-sts
          config: es-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 69.87177267688686
          - type: cos_sim_spearman
            value: 74.57160943395763
          - type: euclidean_pearson
            value: 70.88330406826788
          - type: euclidean_spearman
            value: 74.29767636038422
          - type: manhattan_pearson
            value: 71.38245248369536
          - type: manhattan_spearman
            value: 74.53102232732175
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (it)
          type: mteb/sts22-crosslingual-sts
          config: it
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 72.80225656959544
          - type: cos_sim_spearman
            value: 76.52646173725735
          - type: euclidean_pearson
            value: 73.95710720200799
          - type: euclidean_spearman
            value: 76.54040031984111
          - type: manhattan_pearson
            value: 73.89679971946774
          - type: manhattan_spearman
            value: 76.60886958161574
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (pl-en)
          type: mteb/sts22-crosslingual-sts
          config: pl-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 70.70844249898789
          - type: cos_sim_spearman
            value: 72.68571783670241
          - type: euclidean_pearson
            value: 72.38800772441031
          - type: euclidean_spearman
            value: 72.86804422703312
          - type: manhattan_pearson
            value: 71.29840508203515
          - type: manhattan_spearman
            value: 71.86264441749513
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (zh-en)
          type: mteb/sts22-crosslingual-sts
          config: zh-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 58.647478923935694
          - type: cos_sim_spearman
            value: 63.74453623540931
          - type: euclidean_pearson
            value: 59.60138032437505
          - type: euclidean_spearman
            value: 63.947930832166065
          - type: manhattan_pearson
            value: 58.59735509491861
          - type: manhattan_spearman
            value: 62.082503844627404
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (es-it)
          type: mteb/sts22-crosslingual-sts
          config: es-it
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 65.8722516867162
          - type: cos_sim_spearman
            value: 71.81208592523012
          - type: euclidean_pearson
            value: 67.95315252165956
          - type: euclidean_spearman
            value: 73.00749822046009
          - type: manhattan_pearson
            value: 68.07884688638924
          - type: manhattan_spearman
            value: 72.34210325803069
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (de-fr)
          type: mteb/sts22-crosslingual-sts
          config: de-fr
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 54.5405814240949
          - type: cos_sim_spearman
            value: 60.56838649023775
          - type: euclidean_pearson
            value: 53.011731611314104
          - type: euclidean_spearman
            value: 58.533194841668426
          - type: manhattan_pearson
            value: 53.623067729338494
          - type: manhattan_spearman
            value: 58.018756154446926
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (de-pl)
          type: mteb/sts22-crosslingual-sts
          config: de-pl
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 13.611046866216112
          - type: cos_sim_spearman
            value: 28.238192909158492
          - type: euclidean_pearson
            value: 22.16189199885129
          - type: euclidean_spearman
            value: 35.012895679076564
          - type: manhattan_pearson
            value: 21.969771178698387
          - type: manhattan_spearman
            value: 32.456985088607475
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (fr-pl)
          type: mteb/sts22-crosslingual-sts
          config: fr-pl
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 74.58077407011655
          - type: cos_sim_spearman
            value: 84.51542547285167
          - type: euclidean_pearson
            value: 74.64613843596234
          - type: euclidean_spearman
            value: 84.51542547285167
          - type: manhattan_pearson
            value: 75.15335973101396
          - type: manhattan_spearman
            value: 84.51542547285167
      - task:
          type: STS
        dataset:
          name: MTEB STSBenchmark
          type: mteb/stsbenchmark-sts
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 82.0739825531578
          - type: cos_sim_spearman
            value: 84.01057479311115
          - type: euclidean_pearson
            value: 83.85453227433344
          - type: euclidean_spearman
            value: 84.01630226898655
          - type: manhattan_pearson
            value: 83.75323603028978
          - type: manhattan_spearman
            value: 83.89677983727685
      - task:
          type: Reranking
        dataset:
          name: MTEB SciDocsRR
          type: mteb/scidocs-reranking
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 78.12945623123957
          - type: mrr
            value: 93.87738713719106
      - task:
          type: Retrieval
        dataset:
          name: MTEB SciFact
          type: scifact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 52.983000000000004
          - type: map_at_10
            value: 62.946000000000005
          - type: map_at_100
            value: 63.514
          - type: map_at_1000
            value: 63.554
          - type: map_at_3
            value: 60.183
          - type: map_at_5
            value: 61.672000000000004
          - type: mrr_at_1
            value: 55.667
          - type: mrr_at_10
            value: 64.522
          - type: mrr_at_100
            value: 64.957
          - type: mrr_at_1000
            value: 64.995
          - type: mrr_at_3
            value: 62.388999999999996
          - type: mrr_at_5
            value: 63.639
          - type: ndcg_at_1
            value: 55.667
          - type: ndcg_at_10
            value: 67.704
          - type: ndcg_at_100
            value: 70.299
          - type: ndcg_at_1000
            value: 71.241
          - type: ndcg_at_3
            value: 62.866
          - type: ndcg_at_5
            value: 65.16999999999999
          - type: precision_at_1
            value: 55.667
          - type: precision_at_10
            value: 9.033
          - type: precision_at_100
            value: 1.053
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 24.444
          - type: precision_at_5
            value: 16.133
          - type: recall_at_1
            value: 52.983000000000004
          - type: recall_at_10
            value: 80.656
          - type: recall_at_100
            value: 92.5
          - type: recall_at_1000
            value: 99.667
          - type: recall_at_3
            value: 67.744
          - type: recall_at_5
            value: 73.433
      - task:
          type: PairClassification
        dataset:
          name: MTEB SprintDuplicateQuestions
          type: mteb/sprintduplicatequestions-pairclassification
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.72772277227723
          - type: cos_sim_ap
            value: 92.17845897992215
          - type: cos_sim_f1
            value: 85.9746835443038
          - type: cos_sim_precision
            value: 87.07692307692308
          - type: cos_sim_recall
            value: 84.89999999999999
          - type: dot_accuracy
            value: 99.3039603960396
          - type: dot_ap
            value: 60.70244020124878
          - type: dot_f1
            value: 59.92742353551063
          - type: dot_precision
            value: 62.21743810548978
          - type: dot_recall
            value: 57.8
          - type: euclidean_accuracy
            value: 99.71683168316832
          - type: euclidean_ap
            value: 91.53997039964659
          - type: euclidean_f1
            value: 84.88372093023257
          - type: euclidean_precision
            value: 90.02242152466367
          - type: euclidean_recall
            value: 80.30000000000001
          - type: manhattan_accuracy
            value: 99.72376237623763
          - type: manhattan_ap
            value: 91.80756777790289
          - type: manhattan_f1
            value: 85.48468106479157
          - type: manhattan_precision
            value: 85.8728557013118
          - type: manhattan_recall
            value: 85.1
          - type: max_accuracy
            value: 99.72772277227723
          - type: max_ap
            value: 92.17845897992215
          - type: max_f1
            value: 85.9746835443038
      - task:
          type: Clustering
        dataset:
          name: MTEB StackExchangeClustering
          type: mteb/stackexchange-clustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 53.52464042600003
      - task:
          type: Clustering
        dataset:
          name: MTEB StackExchangeClusteringP2P
          type: mteb/stackexchange-clustering-p2p
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 32.071631948736
      - task:
          type: Reranking
        dataset:
          name: MTEB StackOverflowDupQuestions
          type: mteb/stackoverflowdupquestions-reranking
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 49.19552407604654
          - type: mrr
            value: 49.95269130379425
      - task:
          type: Summarization
        dataset:
          name: MTEB SummEval
          type: mteb/summeval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 29.345293033095427
          - type: cos_sim_spearman
            value: 29.976931423258403
          - type: dot_pearson
            value: 27.047078008958408
          - type: dot_spearman
            value: 27.75894368380218
      - task:
          type: Retrieval
        dataset:
          name: MTEB TRECCOVID
          type: trec-covid
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.22
          - type: map_at_10
            value: 1.706
          - type: map_at_100
            value: 9.634
          - type: map_at_1000
            value: 23.665
          - type: map_at_3
            value: 0.5950000000000001
          - type: map_at_5
            value: 0.95
          - type: mrr_at_1
            value: 86
          - type: mrr_at_10
            value: 91.8
          - type: mrr_at_100
            value: 91.8
          - type: mrr_at_1000
            value: 91.8
          - type: mrr_at_3
            value: 91
          - type: mrr_at_5
            value: 91.8
          - type: ndcg_at_1
            value: 80
          - type: ndcg_at_10
            value: 72.573
          - type: ndcg_at_100
            value: 53.954
          - type: ndcg_at_1000
            value: 47.760999999999996
          - type: ndcg_at_3
            value: 76.173
          - type: ndcg_at_5
            value: 75.264
          - type: precision_at_1
            value: 86
          - type: precision_at_10
            value: 76.4
          - type: precision_at_100
            value: 55.50000000000001
          - type: precision_at_1000
            value: 21.802
          - type: precision_at_3
            value: 81.333
          - type: precision_at_5
            value: 80.4
          - type: recall_at_1
            value: 0.22
          - type: recall_at_10
            value: 1.925
          - type: recall_at_100
            value: 12.762
          - type: recall_at_1000
            value: 44.946000000000005
          - type: recall_at_3
            value: 0.634
          - type: recall_at_5
            value: 1.051
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (sqi-eng)
          type: mteb/tatoeba-bitext-mining
          config: sqi-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 91
          - type: f1
            value: 88.55666666666666
          - type: precision
            value: 87.46166666666667
          - type: recall
            value: 91
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (fry-eng)
          type: mteb/tatoeba-bitext-mining
          config: fry-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 57.22543352601156
          - type: f1
            value: 51.03220478943021
          - type: precision
            value: 48.8150289017341
          - type: recall
            value: 57.22543352601156
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kur-eng)
          type: mteb/tatoeba-bitext-mining
          config: kur-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 46.58536585365854
          - type: f1
            value: 39.66870798578116
          - type: precision
            value: 37.416085946573745
          - type: recall
            value: 46.58536585365854
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tur-eng)
          type: mteb/tatoeba-bitext-mining
          config: tur-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 89.7
          - type: f1
            value: 86.77999999999999
          - type: precision
            value: 85.45333333333332
          - type: recall
            value: 89.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (deu-eng)
          type: mteb/tatoeba-bitext-mining
          config: deu-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 97.39999999999999
          - type: f1
            value: 96.58333333333331
          - type: precision
            value: 96.2
          - type: recall
            value: 97.39999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (nld-eng)
          type: mteb/tatoeba-bitext-mining
          config: nld-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 92.4
          - type: f1
            value: 90.3
          - type: precision
            value: 89.31666666666668
          - type: recall
            value: 92.4
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ron-eng)
          type: mteb/tatoeba-bitext-mining
          config: ron-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 86.9
          - type: f1
            value: 83.67190476190476
          - type: precision
            value: 82.23333333333332
          - type: recall
            value: 86.9
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ang-eng)
          type: mteb/tatoeba-bitext-mining
          config: ang-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 50
          - type: f1
            value: 42.23229092632078
          - type: precision
            value: 39.851634683724235
          - type: recall
            value: 50
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ido-eng)
          type: mteb/tatoeba-bitext-mining
          config: ido-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 76.3
          - type: f1
            value: 70.86190476190477
          - type: precision
            value: 68.68777777777777
          - type: recall
            value: 76.3
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (jav-eng)
          type: mteb/tatoeba-bitext-mining
          config: jav-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 57.073170731707314
          - type: f1
            value: 50.658958927251604
          - type: precision
            value: 48.26480836236933
          - type: recall
            value: 57.073170731707314
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (isl-eng)
          type: mteb/tatoeba-bitext-mining
          config: isl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 68.2
          - type: f1
            value: 62.156507936507936
          - type: precision
            value: 59.84964285714286
          - type: recall
            value: 68.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (slv-eng)
          type: mteb/tatoeba-bitext-mining
          config: slv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 77.52126366950182
          - type: f1
            value: 72.8496210148701
          - type: precision
            value: 70.92171498003819
          - type: recall
            value: 77.52126366950182
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cym-eng)
          type: mteb/tatoeba-bitext-mining
          config: cym-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 70.78260869565217
          - type: f1
            value: 65.32422360248447
          - type: precision
            value: 63.063067367415194
          - type: recall
            value: 70.78260869565217
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kaz-eng)
          type: mteb/tatoeba-bitext-mining
          config: kaz-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 78.43478260869566
          - type: f1
            value: 73.02608695652172
          - type: precision
            value: 70.63768115942028
          - type: recall
            value: 78.43478260869566
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (est-eng)
          type: mteb/tatoeba-bitext-mining
          config: est-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 60.9
          - type: f1
            value: 55.309753694581275
          - type: precision
            value: 53.130476190476195
          - type: recall
            value: 60.9
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (heb-eng)
          type: mteb/tatoeba-bitext-mining
          config: heb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 72.89999999999999
          - type: f1
            value: 67.92023809523809
          - type: precision
            value: 65.82595238095237
          - type: recall
            value: 72.89999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (gla-eng)
          type: mteb/tatoeba-bitext-mining
          config: gla-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 46.80337756332931
          - type: f1
            value: 39.42174900558496
          - type: precision
            value: 36.97101116280851
          - type: recall
            value: 46.80337756332931
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (mar-eng)
          type: mteb/tatoeba-bitext-mining
          config: mar-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 89.8
          - type: f1
            value: 86.79
          - type: precision
            value: 85.375
          - type: recall
            value: 89.8
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (lat-eng)
          type: mteb/tatoeba-bitext-mining
          config: lat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 47.199999999999996
          - type: f1
            value: 39.95484348984349
          - type: precision
            value: 37.561071428571424
          - type: recall
            value: 47.199999999999996
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (bel-eng)
          type: mteb/tatoeba-bitext-mining
          config: bel-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 87.8
          - type: f1
            value: 84.68190476190475
          - type: precision
            value: 83.275
          - type: recall
            value: 87.8
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (pms-eng)
          type: mteb/tatoeba-bitext-mining
          config: pms-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 48.76190476190476
          - type: f1
            value: 42.14965986394558
          - type: precision
            value: 39.96743626743626
          - type: recall
            value: 48.76190476190476
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (gle-eng)
          type: mteb/tatoeba-bitext-mining
          config: gle-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 66.10000000000001
          - type: f1
            value: 59.58580086580086
          - type: precision
            value: 57.150238095238095
          - type: recall
            value: 66.10000000000001
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (pes-eng)
          type: mteb/tatoeba-bitext-mining
          config: pes-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 87.3
          - type: f1
            value: 84
          - type: precision
            value: 82.48666666666666
          - type: recall
            value: 87.3
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (nob-eng)
          type: mteb/tatoeba-bitext-mining
          config: nob-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 90.4
          - type: f1
            value: 87.79523809523809
          - type: precision
            value: 86.6
          - type: recall
            value: 90.4
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (bul-eng)
          type: mteb/tatoeba-bitext-mining
          config: bul-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 87
          - type: f1
            value: 83.81
          - type: precision
            value: 82.36666666666666
          - type: recall
            value: 87
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cbk-eng)
          type: mteb/tatoeba-bitext-mining
          config: cbk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 63.9
          - type: f1
            value: 57.76533189033189
          - type: precision
            value: 55.50595238095239
          - type: recall
            value: 63.9
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (hun-eng)
          type: mteb/tatoeba-bitext-mining
          config: hun-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 76.1
          - type: f1
            value: 71.83690476190478
          - type: precision
            value: 70.04928571428573
          - type: recall
            value: 76.1
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (uig-eng)
          type: mteb/tatoeba-bitext-mining
          config: uig-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 66.3
          - type: f1
            value: 59.32626984126984
          - type: precision
            value: 56.62535714285713
          - type: recall
            value: 66.3
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (rus-eng)
          type: mteb/tatoeba-bitext-mining
          config: rus-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 90.60000000000001
          - type: f1
            value: 87.96333333333334
          - type: precision
            value: 86.73333333333333
          - type: recall
            value: 90.60000000000001
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (spa-eng)
          type: mteb/tatoeba-bitext-mining
          config: spa-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 93.10000000000001
          - type: f1
            value: 91.10000000000001
          - type: precision
            value: 90.16666666666666
          - type: recall
            value: 93.10000000000001
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (hye-eng)
          type: mteb/tatoeba-bitext-mining
          config: hye-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 85.71428571428571
          - type: f1
            value: 82.29142600436403
          - type: precision
            value: 80.8076626877166
          - type: recall
            value: 85.71428571428571
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tel-eng)
          type: mteb/tatoeba-bitext-mining
          config: tel-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 88.88888888888889
          - type: f1
            value: 85.7834757834758
          - type: precision
            value: 84.43732193732193
          - type: recall
            value: 88.88888888888889
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (afr-eng)
          type: mteb/tatoeba-bitext-mining
          config: afr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 88.5
          - type: f1
            value: 85.67190476190476
          - type: precision
            value: 84.43333333333332
          - type: recall
            value: 88.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (mon-eng)
          type: mteb/tatoeba-bitext-mining
          config: mon-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 82.72727272727273
          - type: f1
            value: 78.21969696969695
          - type: precision
            value: 76.18181818181819
          - type: recall
            value: 82.72727272727273
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (arz-eng)
          type: mteb/tatoeba-bitext-mining
          config: arz-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 61.0062893081761
          - type: f1
            value: 55.13976240391334
          - type: precision
            value: 52.92112499659669
          - type: recall
            value: 61.0062893081761
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (hrv-eng)
          type: mteb/tatoeba-bitext-mining
          config: hrv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 89.5
          - type: f1
            value: 86.86666666666666
          - type: precision
            value: 85.69166666666668
          - type: recall
            value: 89.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (nov-eng)
          type: mteb/tatoeba-bitext-mining
          config: nov-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 73.54085603112841
          - type: f1
            value: 68.56031128404669
          - type: precision
            value: 66.53047989623866
          - type: recall
            value: 73.54085603112841
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (gsw-eng)
          type: mteb/tatoeba-bitext-mining
          config: gsw-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 43.58974358974359
          - type: f1
            value: 36.45299145299145
          - type: precision
            value: 33.81155881155882
          - type: recall
            value: 43.58974358974359
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (nds-eng)
          type: mteb/tatoeba-bitext-mining
          config: nds-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 59.599999999999994
          - type: f1
            value: 53.264689754689755
          - type: precision
            value: 50.869166666666665
          - type: recall
            value: 59.599999999999994
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ukr-eng)
          type: mteb/tatoeba-bitext-mining
          config: ukr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 85.2
          - type: f1
            value: 81.61666666666665
          - type: precision
            value: 80.02833333333335
          - type: recall
            value: 85.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (uzb-eng)
          type: mteb/tatoeba-bitext-mining
          config: uzb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 63.78504672897196
          - type: f1
            value: 58.00029669188548
          - type: precision
            value: 55.815809968847354
          - type: recall
            value: 63.78504672897196
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (lit-eng)
          type: mteb/tatoeba-bitext-mining
          config: lit-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 66.5
          - type: f1
            value: 61.518333333333345
          - type: precision
            value: 59.622363699102834
          - type: recall
            value: 66.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ina-eng)
          type: mteb/tatoeba-bitext-mining
          config: ina-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 88.6
          - type: f1
            value: 85.60222222222221
          - type: precision
            value: 84.27916666666665
          - type: recall
            value: 88.6
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (lfn-eng)
          type: mteb/tatoeba-bitext-mining
          config: lfn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 58.699999999999996
          - type: f1
            value: 52.732375957375965
          - type: precision
            value: 50.63214035964035
          - type: recall
            value: 58.699999999999996
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (zsm-eng)
          type: mteb/tatoeba-bitext-mining
          config: zsm-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 92.10000000000001
          - type: f1
            value: 89.99666666666667
          - type: precision
            value: 89.03333333333333
          - type: recall
            value: 92.10000000000001
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ita-eng)
          type: mteb/tatoeba-bitext-mining
          config: ita-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 90.10000000000001
          - type: f1
            value: 87.55666666666667
          - type: precision
            value: 86.36166666666668
          - type: recall
            value: 90.10000000000001
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cmn-eng)
          type: mteb/tatoeba-bitext-mining
          config: cmn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 91.4
          - type: f1
            value: 88.89000000000001
          - type: precision
            value: 87.71166666666666
          - type: recall
            value: 91.4
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (lvs-eng)
          type: mteb/tatoeba-bitext-mining
          config: lvs-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 65.7
          - type: f1
            value: 60.67427750410509
          - type: precision
            value: 58.71785714285714
          - type: recall
            value: 65.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (glg-eng)
          type: mteb/tatoeba-bitext-mining
          config: glg-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 85.39999999999999
          - type: f1
            value: 81.93190476190475
          - type: precision
            value: 80.37833333333333
          - type: recall
            value: 85.39999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ceb-eng)
          type: mteb/tatoeba-bitext-mining
          config: ceb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 47.833333333333336
          - type: f1
            value: 42.006625781625786
          - type: precision
            value: 40.077380952380956
          - type: recall
            value: 47.833333333333336
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (bre-eng)
          type: mteb/tatoeba-bitext-mining
          config: bre-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 10.4
          - type: f1
            value: 8.24465007215007
          - type: precision
            value: 7.664597069597071
          - type: recall
            value: 10.4
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ben-eng)
          type: mteb/tatoeba-bitext-mining
          config: ben-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 82.6
          - type: f1
            value: 77.76333333333334
          - type: precision
            value: 75.57833333333332
          - type: recall
            value: 82.6
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (swg-eng)
          type: mteb/tatoeba-bitext-mining
          config: swg-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 52.67857142857143
          - type: f1
            value: 44.302721088435376
          - type: precision
            value: 41.49801587301587
          - type: recall
            value: 52.67857142857143
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (arq-eng)
          type: mteb/tatoeba-bitext-mining
          config: arq-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 28.3205268935236
          - type: f1
            value: 22.426666605171157
          - type: precision
            value: 20.685900116470915
          - type: recall
            value: 28.3205268935236
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kab-eng)
          type: mteb/tatoeba-bitext-mining
          config: kab-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 22.7
          - type: f1
            value: 17.833970473970474
          - type: precision
            value: 16.407335164835164
          - type: recall
            value: 22.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (fra-eng)
          type: mteb/tatoeba-bitext-mining
          config: fra-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 92.2
          - type: f1
            value: 89.92999999999999
          - type: precision
            value: 88.87
          - type: recall
            value: 92.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (por-eng)
          type: mteb/tatoeba-bitext-mining
          config: por-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 91.4
          - type: f1
            value: 89.25
          - type: precision
            value: 88.21666666666667
          - type: recall
            value: 91.4
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tat-eng)
          type: mteb/tatoeba-bitext-mining
          config: tat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 69.19999999999999
          - type: f1
            value: 63.38269841269841
          - type: precision
            value: 61.14773809523809
          - type: recall
            value: 69.19999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (oci-eng)
          type: mteb/tatoeba-bitext-mining
          config: oci-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 48.8
          - type: f1
            value: 42.839915639915645
          - type: precision
            value: 40.770287114845935
          - type: recall
            value: 48.8
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (pol-eng)
          type: mteb/tatoeba-bitext-mining
          config: pol-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 88.8
          - type: f1
            value: 85.90666666666668
          - type: precision
            value: 84.54166666666666
          - type: recall
            value: 88.8
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (war-eng)
          type: mteb/tatoeba-bitext-mining
          config: war-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 46.6
          - type: f1
            value: 40.85892920804686
          - type: precision
            value: 38.838223114604695
          - type: recall
            value: 46.6
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (aze-eng)
          type: mteb/tatoeba-bitext-mining
          config: aze-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 84
          - type: f1
            value: 80.14190476190475
          - type: precision
            value: 78.45333333333333
          - type: recall
            value: 84
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (vie-eng)
          type: mteb/tatoeba-bitext-mining
          config: vie-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 90.5
          - type: f1
            value: 87.78333333333333
          - type: precision
            value: 86.5
          - type: recall
            value: 90.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (nno-eng)
          type: mteb/tatoeba-bitext-mining
          config: nno-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 74.5
          - type: f1
            value: 69.48397546897547
          - type: precision
            value: 67.51869047619049
          - type: recall
            value: 74.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cha-eng)
          type: mteb/tatoeba-bitext-mining
          config: cha-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 32.846715328467155
          - type: f1
            value: 27.828177499710343
          - type: precision
            value: 26.63451511991658
          - type: recall
            value: 32.846715328467155
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (mhr-eng)
          type: mteb/tatoeba-bitext-mining
          config: mhr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8
          - type: f1
            value: 6.07664116764988
          - type: precision
            value: 5.544177607179943
          - type: recall
            value: 8
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (dan-eng)
          type: mteb/tatoeba-bitext-mining
          config: dan-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 87.6
          - type: f1
            value: 84.38555555555554
          - type: precision
            value: 82.91583333333334
          - type: recall
            value: 87.6
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ell-eng)
          type: mteb/tatoeba-bitext-mining
          config: ell-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 87.5
          - type: f1
            value: 84.08333333333331
          - type: precision
            value: 82.47333333333333
          - type: recall
            value: 87.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (amh-eng)
          type: mteb/tatoeba-bitext-mining
          config: amh-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 80.95238095238095
          - type: f1
            value: 76.13095238095238
          - type: precision
            value: 74.05753968253967
          - type: recall
            value: 80.95238095238095
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (pam-eng)
          type: mteb/tatoeba-bitext-mining
          config: pam-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.799999999999999
          - type: f1
            value: 6.971422975172975
          - type: precision
            value: 6.557814916172301
          - type: recall
            value: 8.799999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (hsb-eng)
          type: mteb/tatoeba-bitext-mining
          config: hsb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 44.099378881987576
          - type: f1
            value: 37.01649742022413
          - type: precision
            value: 34.69420618488942
          - type: recall
            value: 44.099378881987576
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (srp-eng)
          type: mteb/tatoeba-bitext-mining
          config: srp-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 84.3
          - type: f1
            value: 80.32666666666667
          - type: precision
            value: 78.60666666666665
          - type: recall
            value: 84.3
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (epo-eng)
          type: mteb/tatoeba-bitext-mining
          config: epo-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 92.5
          - type: f1
            value: 90.49666666666666
          - type: precision
            value: 89.56666666666668
          - type: recall
            value: 92.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kzj-eng)
          type: mteb/tatoeba-bitext-mining
          config: kzj-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 10
          - type: f1
            value: 8.268423529875141
          - type: precision
            value: 7.878118605532398
          - type: recall
            value: 10
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (awa-eng)
          type: mteb/tatoeba-bitext-mining
          config: awa-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 79.22077922077922
          - type: f1
            value: 74.27128427128426
          - type: precision
            value: 72.28715728715729
          - type: recall
            value: 79.22077922077922
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (fao-eng)
          type: mteb/tatoeba-bitext-mining
          config: fao-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 65.64885496183206
          - type: f1
            value: 58.87495456197747
          - type: precision
            value: 55.992366412213734
          - type: recall
            value: 65.64885496183206
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (mal-eng)
          type: mteb/tatoeba-bitext-mining
          config: mal-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96.06986899563319
          - type: f1
            value: 94.78408539543909
          - type: precision
            value: 94.15332362930616
          - type: recall
            value: 96.06986899563319
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ile-eng)
          type: mteb/tatoeba-bitext-mining
          config: ile-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 77.2
          - type: f1
            value: 71.72571428571428
          - type: precision
            value: 69.41000000000001
          - type: recall
            value: 77.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (bos-eng)
          type: mteb/tatoeba-bitext-mining
          config: bos-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 86.4406779661017
          - type: f1
            value: 83.2391713747646
          - type: precision
            value: 81.74199623352166
          - type: recall
            value: 86.4406779661017
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cor-eng)
          type: mteb/tatoeba-bitext-mining
          config: cor-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.4
          - type: f1
            value: 6.017828743398003
          - type: precision
            value: 5.4829865484756795
          - type: recall
            value: 8.4
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cat-eng)
          type: mteb/tatoeba-bitext-mining
          config: cat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 83.5
          - type: f1
            value: 79.74833333333333
          - type: precision
            value: 78.04837662337664
          - type: recall
            value: 83.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (eus-eng)
          type: mteb/tatoeba-bitext-mining
          config: eus-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 60.4
          - type: f1
            value: 54.467301587301584
          - type: precision
            value: 52.23242424242424
          - type: recall
            value: 60.4
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (yue-eng)
          type: mteb/tatoeba-bitext-mining
          config: yue-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 74.9
          - type: f1
            value: 69.68699134199134
          - type: precision
            value: 67.59873015873016
          - type: recall
            value: 74.9
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (swe-eng)
          type: mteb/tatoeba-bitext-mining
          config: swe-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 88
          - type: f1
            value: 84.9652380952381
          - type: precision
            value: 83.66166666666666
          - type: recall
            value: 88
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (dtp-eng)
          type: mteb/tatoeba-bitext-mining
          config: dtp-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 9.1
          - type: f1
            value: 7.681244588744588
          - type: precision
            value: 7.370043290043291
          - type: recall
            value: 9.1
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kat-eng)
          type: mteb/tatoeba-bitext-mining
          config: kat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 80.9651474530831
          - type: f1
            value: 76.84220605132133
          - type: precision
            value: 75.19606398962966
          - type: recall
            value: 80.9651474530831
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (jpn-eng)
          type: mteb/tatoeba-bitext-mining
          config: jpn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 86.9
          - type: f1
            value: 83.705
          - type: precision
            value: 82.3120634920635
          - type: recall
            value: 86.9
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (csb-eng)
          type: mteb/tatoeba-bitext-mining
          config: csb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 29.64426877470356
          - type: f1
            value: 23.98763072676116
          - type: precision
            value: 22.506399397703746
          - type: recall
            value: 29.64426877470356
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (xho-eng)
          type: mteb/tatoeba-bitext-mining
          config: xho-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 70.4225352112676
          - type: f1
            value: 62.84037558685445
          - type: precision
            value: 59.56572769953053
          - type: recall
            value: 70.4225352112676
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (orv-eng)
          type: mteb/tatoeba-bitext-mining
          config: orv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 19.64071856287425
          - type: f1
            value: 15.125271011207756
          - type: precision
            value: 13.865019261197494
          - type: recall
            value: 19.64071856287425
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ind-eng)
          type: mteb/tatoeba-bitext-mining
          config: ind-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 90.2
          - type: f1
            value: 87.80666666666666
          - type: precision
            value: 86.70833333333331
          - type: recall
            value: 90.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tuk-eng)
          type: mteb/tatoeba-bitext-mining
          config: tuk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 23.15270935960591
          - type: f1
            value: 18.407224958949097
          - type: precision
            value: 16.982385430661292
          - type: recall
            value: 23.15270935960591
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (max-eng)
          type: mteb/tatoeba-bitext-mining
          config: max-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 55.98591549295775
          - type: f1
            value: 49.94718309859154
          - type: precision
            value: 47.77864154624717
          - type: recall
            value: 55.98591549295775
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (swh-eng)
          type: mteb/tatoeba-bitext-mining
          config: swh-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 73.07692307692307
          - type: f1
            value: 66.74358974358974
          - type: precision
            value: 64.06837606837607
          - type: recall
            value: 73.07692307692307
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (hin-eng)
          type: mteb/tatoeba-bitext-mining
          config: hin-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.89999999999999
          - type: f1
            value: 93.25
          - type: precision
            value: 92.43333333333332
          - type: recall
            value: 94.89999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (dsb-eng)
          type: mteb/tatoeba-bitext-mining
          config: dsb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 37.78705636743215
          - type: f1
            value: 31.63899658680452
          - type: precision
            value: 29.72264397629742
          - type: recall
            value: 37.78705636743215
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ber-eng)
          type: mteb/tatoeba-bitext-mining
          config: ber-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 21.6
          - type: f1
            value: 16.91697302697303
          - type: precision
            value: 15.71225147075147
          - type: recall
            value: 21.6
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tam-eng)
          type: mteb/tatoeba-bitext-mining
          config: tam-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 85.01628664495115
          - type: f1
            value: 81.38514037536838
          - type: precision
            value: 79.83170466883823
          - type: recall
            value: 85.01628664495115
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (slk-eng)
          type: mteb/tatoeba-bitext-mining
          config: slk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 83.39999999999999
          - type: f1
            value: 79.96380952380952
          - type: precision
            value: 78.48333333333333
          - type: recall
            value: 83.39999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tgl-eng)
          type: mteb/tatoeba-bitext-mining
          config: tgl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 83.2
          - type: f1
            value: 79.26190476190476
          - type: precision
            value: 77.58833333333334
          - type: recall
            value: 83.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ast-eng)
          type: mteb/tatoeba-bitext-mining
          config: ast-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 75.59055118110236
          - type: f1
            value: 71.66854143232096
          - type: precision
            value: 70.30183727034121
          - type: recall
            value: 75.59055118110236
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (mkd-eng)
          type: mteb/tatoeba-bitext-mining
          config: mkd-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 65.5
          - type: f1
            value: 59.26095238095238
          - type: precision
            value: 56.81909090909092
          - type: recall
            value: 65.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (khm-eng)
          type: mteb/tatoeba-bitext-mining
          config: khm-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 55.26315789473685
          - type: f1
            value: 47.986523325858506
          - type: precision
            value: 45.33950006595436
          - type: recall
            value: 55.26315789473685
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ces-eng)
          type: mteb/tatoeba-bitext-mining
          config: ces-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 82.89999999999999
          - type: f1
            value: 78.835
          - type: precision
            value: 77.04761904761905
          - type: recall
            value: 82.89999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tzl-eng)
          type: mteb/tatoeba-bitext-mining
          config: tzl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 43.269230769230774
          - type: f1
            value: 36.20421245421245
          - type: precision
            value: 33.57371794871795
          - type: recall
            value: 43.269230769230774
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (urd-eng)
          type: mteb/tatoeba-bitext-mining
          config: urd-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 88
          - type: f1
            value: 84.70666666666666
          - type: precision
            value: 83.23166666666665
          - type: recall
            value: 88
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ara-eng)
          type: mteb/tatoeba-bitext-mining
          config: ara-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 77.4
          - type: f1
            value: 72.54666666666667
          - type: precision
            value: 70.54318181818181
          - type: recall
            value: 77.4
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kor-eng)
          type: mteb/tatoeba-bitext-mining
          config: kor-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 78.60000000000001
          - type: f1
            value: 74.1588888888889
          - type: precision
            value: 72.30250000000001
          - type: recall
            value: 78.60000000000001
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (yid-eng)
          type: mteb/tatoeba-bitext-mining
          config: yid-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 72.40566037735849
          - type: f1
            value: 66.82587328813744
          - type: precision
            value: 64.75039308176099
          - type: recall
            value: 72.40566037735849
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (fin-eng)
          type: mteb/tatoeba-bitext-mining
          config: fin-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 73.8
          - type: f1
            value: 68.56357142857144
          - type: precision
            value: 66.3178822055138
          - type: recall
            value: 73.8
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tha-eng)
          type: mteb/tatoeba-bitext-mining
          config: tha-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 91.78832116788321
          - type: f1
            value: 89.3552311435523
          - type: precision
            value: 88.20559610705597
          - type: recall
            value: 91.78832116788321
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (wuu-eng)
          type: mteb/tatoeba-bitext-mining
          config: wuu-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 74.3
          - type: f1
            value: 69.05085581085581
          - type: precision
            value: 66.955
          - type: recall
            value: 74.3
      - task:
          type: Retrieval
        dataset:
          name: MTEB Touche2020
          type: webis-touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.896
          - type: map_at_10
            value: 8.993
          - type: map_at_100
            value: 14.133999999999999
          - type: map_at_1000
            value: 15.668000000000001
          - type: map_at_3
            value: 5.862
          - type: map_at_5
            value: 7.17
          - type: mrr_at_1
            value: 34.694
          - type: mrr_at_10
            value: 42.931000000000004
          - type: mrr_at_100
            value: 44.81
          - type: mrr_at_1000
            value: 44.81
          - type: mrr_at_3
            value: 38.435
          - type: mrr_at_5
            value: 41.701
          - type: ndcg_at_1
            value: 31.633
          - type: ndcg_at_10
            value: 21.163
          - type: ndcg_at_100
            value: 33.306000000000004
          - type: ndcg_at_1000
            value: 45.275999999999996
          - type: ndcg_at_3
            value: 25.685999999999996
          - type: ndcg_at_5
            value: 23.732
          - type: precision_at_1
            value: 34.694
          - type: precision_at_10
            value: 17.755000000000003
          - type: precision_at_100
            value: 6.938999999999999
          - type: precision_at_1000
            value: 1.48
          - type: precision_at_3
            value: 25.85
          - type: precision_at_5
            value: 23.265
          - type: recall_at_1
            value: 2.896
          - type: recall_at_10
            value: 13.333999999999998
          - type: recall_at_100
            value: 43.517
          - type: recall_at_1000
            value: 79.836
          - type: recall_at_3
            value: 6.306000000000001
          - type: recall_at_5
            value: 8.825
      - task:
          type: Classification
        dataset:
          name: MTEB ToxicConversationsClassification
          type: mteb/toxic_conversations_50k
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 69.3874
          - type: ap
            value: 13.829909072469423
          - type: f1
            value: 53.54534203543492
      - task:
          type: Classification
        dataset:
          name: MTEB TweetSentimentExtractionClassification
          type: mteb/tweet_sentiment_extraction
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 62.62026032823995
          - type: f1
            value: 62.85251350485221
      - task:
          type: Clustering
        dataset:
          name: MTEB TwentyNewsgroupsClustering
          type: mteb/twentynewsgroups-clustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 33.21527881409797
      - task:
          type: PairClassification
        dataset:
          name: MTEB TwitterSemEval2015
          type: mteb/twittersemeval2015-pairclassification
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 84.97943613280086
          - type: cos_sim_ap
            value: 70.75454316885921
          - type: cos_sim_f1
            value: 65.38274012676743
          - type: cos_sim_precision
            value: 60.761214318078835
          - type: cos_sim_recall
            value: 70.76517150395777
          - type: dot_accuracy
            value: 79.0546581629612
          - type: dot_ap
            value: 47.3197121792147
          - type: dot_f1
            value: 49.20106524633821
          - type: dot_precision
            value: 42.45499808502489
          - type: dot_recall
            value: 58.49604221635884
          - type: euclidean_accuracy
            value: 85.08076533349228
          - type: euclidean_ap
            value: 70.95016106374474
          - type: euclidean_f1
            value: 65.43987900176455
          - type: euclidean_precision
            value: 62.64478764478765
          - type: euclidean_recall
            value: 68.49604221635884
          - type: manhattan_accuracy
            value: 84.93771234428085
          - type: manhattan_ap
            value: 70.63668388755362
          - type: manhattan_f1
            value: 65.23895401262398
          - type: manhattan_precision
            value: 56.946084218811485
          - type: manhattan_recall
            value: 76.35883905013192
          - type: max_accuracy
            value: 85.08076533349228
          - type: max_ap
            value: 70.95016106374474
          - type: max_f1
            value: 65.43987900176455
      - task:
          type: PairClassification
        dataset:
          name: MTEB TwitterURLCorpus
          type: mteb/twitterurlcorpus-pairclassification
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.69096130709822
          - type: cos_sim_ap
            value: 84.82526278228542
          - type: cos_sim_f1
            value: 77.65485060585536
          - type: cos_sim_precision
            value: 75.94582658619167
          - type: cos_sim_recall
            value: 79.44256236526024
          - type: dot_accuracy
            value: 80.97954748321496
          - type: dot_ap
            value: 64.81642914145866
          - type: dot_f1
            value: 60.631996987229975
          - type: dot_precision
            value: 54.5897293631712
          - type: dot_recall
            value: 68.17831844779796
          - type: euclidean_accuracy
            value: 88.6987231730508
          - type: euclidean_ap
            value: 84.80003825477253
          - type: euclidean_f1
            value: 77.67194179854496
          - type: euclidean_precision
            value: 75.7128235122094
          - type: euclidean_recall
            value: 79.73514012935017
          - type: manhattan_accuracy
            value: 88.62692591298949
          - type: manhattan_ap
            value: 84.80451408255276
          - type: manhattan_f1
            value: 77.69888949572183
          - type: manhattan_precision
            value: 73.70311528631622
          - type: manhattan_recall
            value: 82.15275639051433
          - type: max_accuracy
            value: 88.6987231730508
          - type: max_ap
            value: 84.82526278228542
          - type: max_f1
            value: 77.69888949572183

multilingual-e5-small-mlx

This model was converted to MLX format from intfloat/multilingual-e5-small. Refer to the original model card for more details on the model.

Use with mlx

pip install mlx
git clone https://github.com/ml-explore/mlx-examples.git
cd mlx-examples/llms/hf_llm
python generate.py --model mlx-community/multilingual-e5-small-mlx --prompt "My name is"