metadata
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mnoukhov/pythia410m-sft-tldr
model-index:
- name: pythia410m-dpo2-tldr
results: []
pythia410m-dpo2-tldr
This model is a fine-tuned version of mnoukhov/pythia410m-sft-tldr on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7753
- Rewards/chosen: -6.3555
- Rewards/rejected: -6.7803
- Rewards/accuracies: 0.5989
- Rewards/margins: 0.4248
- Logps/rejected: -192.7698
- Logps/chosen: -192.7698
- Logps/ref Rejected: -59.5615
- Logps/ref Chosen: -65.6594
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logps/ref Rejected | Logps/ref Chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.412 | 0.1999 | 335 | 0.6786 | -4.5428 | -4.9111 | 0.6222 | 0.3683 | -156.5151 | -156.5151 | -59.5615 | -65.6594 |
0.3588 | 0.3999 | 670 | 0.7264 | -5.6339 | -6.0502 | 0.6107 | 0.4163 | -178.3372 | -178.3372 | -59.5615 | -65.6594 |
0.345 | 0.5998 | 1005 | 0.7470 | -6.0062 | -6.4506 | 0.6086 | 0.4444 | -185.7831 | -185.7831 | -59.5615 | -65.6594 |
0.3419 | 0.7998 | 1340 | 0.7738 | -6.3469 | -6.7796 | 0.6012 | 0.4327 | -192.5978 | -192.5978 | -59.5615 | -65.6594 |
0.3384 | 0.9997 | 1675 | 0.7753 | -6.3555 | -6.7803 | 0.5989 | 0.4248 | -192.7698 | -192.7698 | -59.5615 | -65.6594 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1