mnoukhov's picture
mnoukhov/pythia410m-dpo2-tldr
b6ac1ab verified
|
raw
history blame
3 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: mnoukhov/pythia410m-sft-tldr
model-index:
  - name: pythia410m-dpo2-tldr
    results: []

pythia410m-dpo2-tldr

This model is a fine-tuned version of mnoukhov/pythia410m-sft-tldr on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7753
  • Rewards/chosen: -6.3555
  • Rewards/rejected: -6.7803
  • Rewards/accuracies: 0.5989
  • Rewards/margins: 0.4248
  • Logps/rejected: -192.7698
  • Logps/chosen: -192.7698
  • Logps/ref Rejected: -59.5615
  • Logps/ref Chosen: -65.6594

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 1.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logps/ref Rejected Logps/ref Chosen
0.412 0.1999 335 0.6786 -4.5428 -4.9111 0.6222 0.3683 -156.5151 -156.5151 -59.5615 -65.6594
0.3588 0.3999 670 0.7264 -5.6339 -6.0502 0.6107 0.4163 -178.3372 -178.3372 -59.5615 -65.6594
0.345 0.5998 1005 0.7470 -6.0062 -6.4506 0.6086 0.4444 -185.7831 -185.7831 -59.5615 -65.6594
0.3419 0.7998 1340 0.7738 -6.3469 -6.7796 0.6012 0.4327 -192.5978 -192.5978 -59.5615 -65.6594
0.3384 0.9997 1675 0.7753 -6.3555 -6.7803 0.5989 0.4248 -192.7698 -192.7698 -59.5615 -65.6594

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1