|
--- |
|
language: ar |
|
license: apache-2.0 |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
datasets: |
|
- common_voice |
|
- arabic_speech_corpus |
|
metrics: |
|
- wer |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
model-index: |
|
- name: Mohammed XLSR Wav2Vec2 Large 53 |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Speech Recognition |
|
dataset: |
|
name: Common Voice ar |
|
type: common_voice |
|
args: ar |
|
metrics: |
|
- type: wer |
|
value: 36.699 |
|
name: Test WER |
|
- type: wer |
|
value: 36.699 |
|
name: Validation WER |
|
--- |
|
# Fine-tuned Wav2Vec2-Large-XLSR-53 large model for speech recognition on Arabic Language |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) |
|
on Arabic using the `train` splits of [Common Voice](https://huggingface.co/datasets/common_voice) |
|
and [Arabic Speech Corpus](https://huggingface.co/datasets/arabic_speech_corpus). |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows: |
|
|
|
```python |
|
%%capture |
|
!pip install datasets |
|
!pip install transformers==4.4.0 |
|
!pip install torchaudio |
|
!pip install jiwer |
|
!pip install tnkeeh |
|
|
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
test_dataset = load_dataset("common_voice", "ar", split="test[:2%]") |
|
|
|
|
|
processor = Wav2Vec2Processor.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic") |
|
model = Wav2Vec2ForCTC.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic") |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
print("The predicted sentence is: ", processor.batch_decode(predicted_ids)) |
|
print("The original sentence is:", test_dataset["sentence"][:2]) |
|
``` |
|
|
|
The output is: |
|
|
|
``` |
|
The predicted sentence is : ['ألديك قلم', 'ليست نارك مكسافة على هذه الأرض أبعد من يوم أمس'] |
|
The original sentence is: ['ألديك قلم ؟', 'ليست هناك مسافة على هذه الأرض أبعد من يوم أمس.'] |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the Arabic test data of Common Voice: |
|
|
|
```python |
|
|
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
# creating a dictionary with all diacritics |
|
dict = { |
|
'ِ': '', |
|
'ُ': '', |
|
'ٓ': '', |
|
'ٰ': '', |
|
'ْ': '', |
|
'ٌ': '', |
|
'ٍ': '', |
|
'ً': '', |
|
'ّ': '', |
|
'َ': '', |
|
'~': '', |
|
',': '', |
|
'ـ': '', |
|
'—': '', |
|
'.': '', |
|
'!': '', |
|
'-': '', |
|
';': '', |
|
':': '', |
|
'\'': '', |
|
'"': '', |
|
'☭': '', |
|
'«': '', |
|
'»': '', |
|
'؛': '', |
|
'ـ': '', |
|
'_': '', |
|
'،': '', |
|
'“': '', |
|
'%': '', |
|
'‘': '', |
|
'”': '', |
|
'�': '', |
|
'_': '', |
|
',': '', |
|
'?': '', |
|
'#': '', |
|
'‘': '', |
|
'.': '', |
|
'؛': '', |
|
'get': '', |
|
'؟': '', |
|
' ': ' ', |
|
'\'ۖ ': '', |
|
'\'': '', |
|
'\'ۚ' : '', |
|
' \'': '', |
|
'31': '', |
|
'24': '', |
|
'39': '' |
|
} |
|
|
|
# replacing multiple diacritics using dictionary (stackoverflow is amazing) |
|
def remove_special_characters(batch): |
|
# Create a regular expression from the dictionary keys |
|
regex = re.compile("(%s)" % "|".join(map(re.escape, dict.keys()))) |
|
# For each match, look-up corresponding value in dictionary |
|
batch["sentence"] = regex.sub(lambda mo: dict[mo.string[mo.start():mo.end()]], batch["sentence"]) |
|
return batch |
|
|
|
|
|
test_dataset = load_dataset("common_voice", "ar", split="test") |
|
wer = load_metric("wer") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic") |
|
model = Wav2Vec2ForCTC.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic") |
|
model.to("cuda") |
|
|
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
test_dataset = test_dataset.map(remove_special_characters) |
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
|
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
``` |
|
|
|
**Test Result**: 36.699% |
|
|
|
|
|
## Future Work |
|
|
|
One can use *data augmentation*, *transliteration*, or *attention_mask* to increase the accuracy. |
|
|