momo345's picture
End of training
d0f9fed verified
metadata
license: apache-2.0
base_model: microsoft/cvt-13
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: cvt-13-finetuned-flower
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9368421052631579
          - name: Precision
            type: precision
            value: 0.9374630861809764
          - name: Recall
            type: recall
            value: 0.9368421052631579
          - name: F1
            type: f1
            value: 0.9341589949056075

cvt-13-finetuned-flower

This model is a fine-tuned version of microsoft/cvt-13 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2151
  • Accuracy: 0.9368
  • Precision: 0.9375
  • Recall: 0.9368
  • F1: 0.9342

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.0555 1.0 40 0.3933 0.8766 0.8828 0.8766 0.8713
1.1941 2.0 80 1.0797 0.6726 0.7515 0.6726 0.6546
1.2286 3.0 120 0.8459 0.7347 0.7820 0.7347 0.7343
1.209 4.0 160 0.6660 0.7880 0.8173 0.7880 0.7833
1.1158 5.0 200 0.7348 0.7597 0.7809 0.7597 0.7561
1.1113 6.0 240 0.6387 0.8062 0.8164 0.8062 0.7986
1.0332 7.0 280 0.6555 0.7887 0.8064 0.7887 0.7831
1.0234 8.0 320 0.5776 0.8276 0.8447 0.8276 0.8177
0.9997 9.0 360 0.5784 0.8214 0.8421 0.8214 0.8169
0.9421 10.0 400 0.4667 0.8486 0.8600 0.8486 0.8453
0.9057 11.0 440 0.4508 0.8541 0.8711 0.8541 0.8487
0.8662 12.0 480 0.3517 0.8911 0.8938 0.8911 0.8868
0.8341 13.0 520 0.3191 0.8976 0.9021 0.8976 0.8945
0.757 14.0 560 0.2785 0.9183 0.9199 0.9183 0.9144
0.7906 15.0 600 0.2698 0.9201 0.9218 0.9201 0.9172
0.7464 16.0 640 0.2594 0.9216 0.9232 0.9216 0.9188
0.7335 17.0 680 0.2491 0.9263 0.9281 0.9263 0.9240
0.7085 18.0 720 0.2396 0.9303 0.9304 0.9303 0.9272
0.7177 19.0 760 0.2171 0.9350 0.9355 0.9350 0.9321
0.6735 20.0 800 0.2151 0.9368 0.9375 0.9368 0.9342

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.0.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2