metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
datasets:
- common_voice_6_1
metrics:
- wer
model-index:
- name: wav2vec2-large-morrnla-ar-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_6_1
type: common_voice_6_1
config: ar
split: test[10:20]
args: ar
metrics:
- name: Wer
type: wer
value: 1
wav2vec2-large-morrnla-ar-colab
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice_6_1 dataset. It achieves the following results on the evaluation set:
- Loss: 3.5524
- Wer: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
16.4983 | 3.33 | 10 | 23.6467 | 1.0 |
8.0393 | 6.67 | 20 | 7.4047 | 1.0 |
4.2297 | 10.0 | 30 | 4.1771 | 1.0 |
3.6003 | 13.33 | 40 | 3.8565 | 1.0 |
3.4788 | 16.67 | 50 | 3.5921 | 1.0 |
3.4111 | 20.0 | 60 | 3.5524 | 1.0 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0