moock's picture
Update README.md
f024e7c
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-finetuned-gardner-te-max
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.594017094017094

swinv2-tiny-patch4-window8-256-finetuned-gardner-te-max

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8795
  • Accuracy: 0.5940

Model description

Predict Trophectoderm Grade - Gardner Score from an embryo image

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0943 0.94 11 1.0750 0.6325
0.9996 1.96 23 0.8011 0.6325
0.7731 2.98 35 0.7182 0.6325
0.7564 4.0 47 0.7109 0.6325
0.7331 4.94 58 0.7026 0.6325
0.7336 5.96 70 0.6848 0.6325
0.7305 6.98 82 0.6938 0.6325
0.7314 8.0 94 0.6549 0.6325
0.6905 8.94 105 0.6364 0.6867
0.7315 9.96 117 0.6223 0.6687
0.6839 10.98 129 0.6528 0.7530
0.6931 12.0 141 0.6209 0.7410
0.6705 12.94 152 0.6296 0.7169
0.7227 13.96 164 0.6039 0.7108
0.6695 14.98 176 0.6049 0.7530
0.6981 16.0 188 0.5965 0.7048
0.6566 16.94 199 0.6111 0.7410
0.6828 17.96 211 0.5969 0.7530
0.6632 18.72 220 0.5947 0.7530

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2
  • Datasets 2.16.0
  • Tokenizers 0.15.0