Gemma-1000-4bit-qlora
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0122
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.057 | 1.0 | 113 | 0.0335 |
0.02 | 2.0 | 226 | 0.0249 |
0.0018 | 3.0 | 339 | 0.0147 |
0.0007 | 4.0 | 452 | 0.0097 |
0.0001 | 5.0 | 565 | 0.0122 |
Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 9
Model tree for mooo16/Gemma-1000-4bit-qlora
Base model
google/gemma-2b