morganchen1007's picture
update model card README.md
8d568da
|
raw
history blame
2.87 kB
metadata
license: gpl-3.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-base-chinese-finetuned-ner_0301_J_DATA
    results: []

bert-base-chinese-finetuned-ner_0301_J_DATA

This model is a fine-tuned version of ckiplab/bert-base-chinese-ner on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0318
  • Precision: 0.9551
  • Recall: 0.9787
  • F1: 0.9668
  • Accuracy: 0.9923

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.352 1.0 705 0.0754 0.8558 0.9182 0.8859 0.9774
0.0636 2.0 1410 0.0928 0.9082 0.9428 0.9252 0.9794
0.025 3.0 2115 0.0576 0.9262 0.9574 0.9416 0.9828
0.0253 4.0 2820 0.0801 0.9419 0.9630 0.9523 0.9824
0.0169 5.0 3525 0.0400 0.9287 0.9641 0.9461 0.9886
0.0108 6.0 4230 0.0370 0.9372 0.9709 0.9537 0.9903
0.0143 7.0 4935 0.0430 0.9308 0.9652 0.9477 0.9855
0.0083 8.0 5640 0.0648 0.9382 0.9709 0.9543 0.9877
0.0057 9.0 6345 0.0269 0.9222 0.9697 0.9454 0.9903
0.0036 10.0 7050 0.0338 0.9464 0.9697 0.9579 0.9927
0.003 11.0 7755 0.0486 0.9581 0.9742 0.9661 0.9894
0.0017 12.0 8460 0.0230 0.9593 0.9765 0.9678 0.9909
0.001 13.0 9165 0.0260 0.9508 0.9753 0.9629 0.9949
0.0014 14.0 9870 0.0357 0.9582 0.9765 0.9672 0.9914
0.0008 15.0 10575 0.0318 0.9551 0.9787 0.9668 0.9923

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.8.0
  • Tokenizers 0.12.1