metadata
license: gpl-3.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-chinese-finetuned-ner_0301_J_DATA
results: []
bert-base-chinese-finetuned-ner_0301_J_DATA
This model is a fine-tuned version of ckiplab/bert-base-chinese-ner on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0318
- Precision: 0.9551
- Recall: 0.9787
- F1: 0.9668
- Accuracy: 0.9923
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.352 | 1.0 | 705 | 0.0754 | 0.8558 | 0.9182 | 0.8859 | 0.9774 |
0.0636 | 2.0 | 1410 | 0.0928 | 0.9082 | 0.9428 | 0.9252 | 0.9794 |
0.025 | 3.0 | 2115 | 0.0576 | 0.9262 | 0.9574 | 0.9416 | 0.9828 |
0.0253 | 4.0 | 2820 | 0.0801 | 0.9419 | 0.9630 | 0.9523 | 0.9824 |
0.0169 | 5.0 | 3525 | 0.0400 | 0.9287 | 0.9641 | 0.9461 | 0.9886 |
0.0108 | 6.0 | 4230 | 0.0370 | 0.9372 | 0.9709 | 0.9537 | 0.9903 |
0.0143 | 7.0 | 4935 | 0.0430 | 0.9308 | 0.9652 | 0.9477 | 0.9855 |
0.0083 | 8.0 | 5640 | 0.0648 | 0.9382 | 0.9709 | 0.9543 | 0.9877 |
0.0057 | 9.0 | 6345 | 0.0269 | 0.9222 | 0.9697 | 0.9454 | 0.9903 |
0.0036 | 10.0 | 7050 | 0.0338 | 0.9464 | 0.9697 | 0.9579 | 0.9927 |
0.003 | 11.0 | 7755 | 0.0486 | 0.9581 | 0.9742 | 0.9661 | 0.9894 |
0.0017 | 12.0 | 8460 | 0.0230 | 0.9593 | 0.9765 | 0.9678 | 0.9909 |
0.001 | 13.0 | 9165 | 0.0260 | 0.9508 | 0.9753 | 0.9629 | 0.9949 |
0.0014 | 14.0 | 9870 | 0.0357 | 0.9582 | 0.9765 | 0.9672 | 0.9914 |
0.0008 | 15.0 | 10575 | 0.0318 | 0.9551 | 0.9787 | 0.9668 | 0.9923 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.13.0+cu117
- Datasets 2.8.0
- Tokenizers 0.12.1