metadata
license: other
base_model: nvidia/segformer-b1-finetuned-ade-512-512
tags:
- vision
- image-segmentation
- generated_from_trainer
metrics:
- precision
model-index:
- name: segformer-b1-finetuned-segments-pv_v1_normalized_p100_4batch_try1
results: []
segformer-b1-finetuned-segments-pv_v1_normalized_p100_4batch_try1
This model is a fine-tuned version of nvidia/segformer-b1-finetuned-ade-512-512 on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0012
- Mean Iou: 0.9586
- Precision: 0.9792
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision |
---|---|---|---|---|---|
0.2548 | 0.9989 | 229 | 0.0851 | 0.6627 | 0.7444 |
0.0259 | 1.9978 | 458 | 0.0141 | 0.8187 | 0.8803 |
0.011 | 2.9967 | 687 | 0.0082 | 0.8288 | 0.8937 |
0.0073 | 4.0 | 917 | 0.0055 | 0.8596 | 0.8955 |
0.0059 | 4.9989 | 1146 | 0.0053 | 0.8527 | 0.8786 |
0.0047 | 5.9978 | 1375 | 0.0039 | 0.8920 | 0.9370 |
0.0039 | 6.9967 | 1604 | 0.0039 | 0.8811 | 0.9470 |
0.0041 | 8.0 | 1834 | 0.0046 | 0.8564 | 0.9432 |
0.0042 | 8.9989 | 2063 | 0.0040 | 0.8786 | 0.9099 |
0.004 | 9.9978 | 2292 | 0.0029 | 0.9062 | 0.9479 |
0.0037 | 10.9967 | 2521 | 0.0030 | 0.9002 | 0.9557 |
0.0031 | 12.0 | 2751 | 0.0026 | 0.9150 | 0.9415 |
0.0028 | 12.9989 | 2980 | 0.0023 | 0.9216 | 0.9597 |
0.0035 | 13.9978 | 3209 | 0.0038 | 0.8824 | 0.9091 |
0.0032 | 14.9967 | 3438 | 0.0029 | 0.9041 | 0.9477 |
0.0032 | 16.0 | 3668 | 0.0024 | 0.9191 | 0.9548 |
0.0026 | 16.9989 | 3897 | 0.0025 | 0.9177 | 0.9487 |
0.0024 | 17.9978 | 4126 | 0.0022 | 0.9235 | 0.9523 |
0.0025 | 18.9967 | 4355 | 0.0021 | 0.9270 | 0.9563 |
0.003 | 20.0 | 4585 | 0.0034 | 0.8911 | 0.9511 |
0.0027 | 20.9989 | 4814 | 0.0023 | 0.9216 | 0.9576 |
0.0024 | 21.9978 | 5043 | 0.0020 | 0.9296 | 0.9606 |
0.0023 | 22.9967 | 5272 | 0.0019 | 0.9331 | 0.9602 |
0.002 | 24.0 | 5502 | 0.0020 | 0.9318 | 0.9667 |
0.002 | 24.9989 | 5731 | 0.0018 | 0.9373 | 0.9619 |
0.0022 | 25.9978 | 5960 | 0.0019 | 0.9352 | 0.9582 |
0.0025 | 26.9967 | 6189 | 0.0019 | 0.9328 | 0.9686 |
0.0019 | 28.0 | 6419 | 0.0017 | 0.9400 | 0.9632 |
0.0018 | 28.9989 | 6648 | 0.0016 | 0.9430 | 0.9689 |
0.0017 | 29.9978 | 6877 | 0.0016 | 0.9443 | 0.9712 |
0.0017 | 30.9967 | 7106 | 0.0015 | 0.9471 | 0.9720 |
0.0016 | 32.0 | 7336 | 0.0015 | 0.9492 | 0.9719 |
0.0016 | 32.9989 | 7565 | 0.0014 | 0.9503 | 0.9721 |
0.0015 | 33.9978 | 7794 | 0.0014 | 0.9525 | 0.9737 |
0.0015 | 34.9967 | 8023 | 0.0013 | 0.9532 | 0.9713 |
0.0014 | 36.0 | 8253 | 0.0013 | 0.9536 | 0.9687 |
0.0014 | 36.9989 | 8482 | 0.0012 | 0.9562 | 0.9733 |
0.0014 | 37.9978 | 8711 | 0.0012 | 0.9576 | 0.9767 |
0.0014 | 38.9967 | 8940 | 0.0012 | 0.9579 | 0.9749 |
0.0014 | 39.9564 | 9160 | 0.0012 | 0.9586 | 0.9792 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1