metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
datasets:
- mp-02/cord
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-base-cord
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mp-02/cord
type: mp-02/cord
metrics:
- name: Precision
type: precision
value: 0.9752270850536746
- name: Recall
type: recall
value: 0.9784589892294946
- name: F1
type: f1
value: 0.976840363937138
- name: Accuracy
type: accuracy
value: 0.973924977127173
layoutlmv3-base-cord
This model is a fine-tuned version of microsoft/layoutlmv3-base on the mp-02/cord dataset. It achieves the following results on the evaluation set:
- Loss: 0.1517
- Precision: 0.9752
- Recall: 0.9785
- F1: 0.9768
- Accuracy: 0.9739
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 2.0 | 100 | 0.8667 | 0.7592 | 0.8202 | 0.7885 | 0.8097 |
No log | 4.0 | 200 | 0.3443 | 0.9122 | 0.9387 | 0.9253 | 0.9222 |
No log | 6.0 | 300 | 0.2128 | 0.9345 | 0.9569 | 0.9456 | 0.9579 |
No log | 8.0 | 400 | 0.1745 | 0.9440 | 0.9635 | 0.9537 | 0.9629 |
0.6362 | 10.0 | 500 | 0.1594 | 0.9559 | 0.9702 | 0.9630 | 0.9684 |
0.6362 | 12.0 | 600 | 0.1720 | 0.9630 | 0.9693 | 0.9661 | 0.9629 |
0.6362 | 14.0 | 700 | 0.1528 | 0.9607 | 0.9710 | 0.9658 | 0.9675 |
0.6362 | 16.0 | 800 | 0.1460 | 0.9638 | 0.9718 | 0.9678 | 0.9680 |
0.6362 | 18.0 | 900 | 0.1609 | 0.9614 | 0.9702 | 0.9658 | 0.9648 |
0.0536 | 20.0 | 1000 | 0.1517 | 0.9752 | 0.9785 | 0.9768 | 0.9739 |
0.0536 | 22.0 | 1100 | 0.1901 | 0.9614 | 0.9693 | 0.9653 | 0.9657 |
0.0536 | 24.0 | 1200 | 0.1867 | 0.9638 | 0.9718 | 0.9678 | 0.9666 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1