mp-02's picture
End of training
dc558ec verified
metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - mp-02/cord
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-base-cord
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: mp-02/cord
          type: mp-02/cord
        metrics:
          - name: Precision
            type: precision
            value: 0.9752270850536746
          - name: Recall
            type: recall
            value: 0.9784589892294946
          - name: F1
            type: f1
            value: 0.976840363937138
          - name: Accuracy
            type: accuracy
            value: 0.973924977127173

layoutlmv3-base-cord

This model is a fine-tuned version of microsoft/layoutlmv3-base on the mp-02/cord dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1517
  • Precision: 0.9752
  • Recall: 0.9785
  • F1: 0.9768
  • Accuracy: 0.9739

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.0 100 0.8667 0.7592 0.8202 0.7885 0.8097
No log 4.0 200 0.3443 0.9122 0.9387 0.9253 0.9222
No log 6.0 300 0.2128 0.9345 0.9569 0.9456 0.9579
No log 8.0 400 0.1745 0.9440 0.9635 0.9537 0.9629
0.6362 10.0 500 0.1594 0.9559 0.9702 0.9630 0.9684
0.6362 12.0 600 0.1720 0.9630 0.9693 0.9661 0.9629
0.6362 14.0 700 0.1528 0.9607 0.9710 0.9658 0.9675
0.6362 16.0 800 0.1460 0.9638 0.9718 0.9678 0.9680
0.6362 18.0 900 0.1609 0.9614 0.9702 0.9658 0.9648
0.0536 20.0 1000 0.1517 0.9752 0.9785 0.9768 0.9739
0.0536 22.0 1100 0.1901 0.9614 0.9693 0.9653 0.9657
0.0536 24.0 1200 0.1867 0.9638 0.9718 0.9678 0.9666

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1