File size: 1,998 Bytes
a5c0eb9 0e686e2 a5c0eb9 0e686e2 a5c0eb9 7cf96a8 a5c0eb9 8142819 a5c0eb9 8cb6f0d 0e686e2 a5c0eb9 8142819 a5c0eb9 7cf96a8 8142819 a5c0eb9 7cf96a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-funsd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-finetuned-funsd
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5930
- Precision: 0.7981
- Recall: 0.8675
- F1: 0.8313
- Accuracy: 0.8104
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 150
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.67 | 25 | 1.2209 | 0.4642 | 0.5155 | 0.4885 | 0.6559 |
| No log | 3.33 | 50 | 0.8172 | 0.7324 | 0.776 | 0.7536 | 0.7619 |
| No log | 5.0 | 75 | 0.6125 | 0.7876 | 0.8435 | 0.8146 | 0.8126 |
| No log | 6.67 | 100 | 0.5984 | 0.8053 | 0.8665 | 0.8348 | 0.8107 |
| No log | 8.33 | 125 | 0.5674 | 0.8040 | 0.8715 | 0.8364 | 0.8217 |
| No log | 10.0 | 150 | 0.5930 | 0.7981 | 0.8675 | 0.8313 | 0.8104 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 2.13.2
- Tokenizers 0.10.1
|