bert-ner-3
This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5646
- Precision: 0.1708
- Recall: 0.4296
- F1: 0.2444
- Accuracy: 0.8849
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 211 | 0.3086 | 0.1551 | 0.2612 | 0.1946 | 0.9151 |
No log | 2.0 | 422 | 0.3039 | 0.1730 | 0.3608 | 0.2339 | 0.9091 |
0.3957 | 3.0 | 633 | 0.3823 | 0.1396 | 0.3608 | 0.2013 | 0.8904 |
0.3957 | 4.0 | 844 | 0.4147 | 0.1592 | 0.3780 | 0.2240 | 0.8862 |
0.1085 | 5.0 | 1055 | 0.4257 | 0.1785 | 0.3814 | 0.2432 | 0.8963 |
0.1085 | 6.0 | 1266 | 0.5030 | 0.1575 | 0.4055 | 0.2269 | 0.8797 |
0.1085 | 7.0 | 1477 | 0.5427 | 0.1509 | 0.3883 | 0.2173 | 0.8784 |
0.0488 | 8.0 | 1688 | 0.5601 | 0.1673 | 0.4467 | 0.2434 | 0.8775 |
0.0488 | 9.0 | 1899 | 0.5518 | 0.1707 | 0.4124 | 0.2414 | 0.8880 |
0.0243 | 10.0 | 2110 | 0.5646 | 0.1708 | 0.4296 | 0.2444 | 0.8849 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.