metadata
language:
- fi
library_name: peft
base_model: mpasila/gpt3-finnish-8B-gptq-4bit
license: apache-2.0
datasets:
- Finnish-NLP/Capybara-fi-deepl-translated-sft
- mpasila/Capybara-fi-deepl-translated-sft-alpaca
Model Card for Capybara-Finnish-V1-8B-LoRA
LoRA trained using mpasila/gpt3-finnish-8B-gptq-4bit as the base model. Also the quantized model is based on this TurkuNLP/gpt3-finnish-8B. Dataset used with the LoRA is Finnish-NLP/Capybara-fi-deepl-translated-sft with some modifications so it uses Alpaca formatting modified dataset.
It uses Alpaca format but with a translated instruction at the start:
{
"instruction,output": "Alla on ohje, jossa kuvataan tehtävä. Kirjoita vastaus, joka täyttää pyynnön asianmukaisesti.\n\n### Instruction:\n%instruction%\n\n### Response:\n%output%",
"instruction,input,output": "Alla on ohje, jossa kuvataan tehtävä ja joka on yhdistetty kontekstia lisäävään syötteeseen. Kirjoita vastaus, joka täyttää pyynnön asianmukaisesti.\n\n### Instruction:\n%instruction%\n\n### Input:\n%input%\n\n### Response:\n%output%"
}
Using the following settings:
{
"lora_name": "Capybara_Finnish_V1",
"always_override": false,
"q_proj_en": true,
"v_proj_en": true,
"k_proj_en": false,
"o_proj_en": false,
"gate_proj_en": false,
"down_proj_en": false,
"up_proj_en": false,
"save_steps": 250.0,
"micro_batch_size": 4,
"batch_size": 128,
"epochs": 3.0,
"learning_rate": "3e-4",
"lr_scheduler_type": "linear",
"lora_rank": 32,
"lora_alpha": 64,
"lora_dropout": 0.05,
"cutoff_len": 256,
"dataset": "capybara_finnish_v1.1",
"eval_dataset": "None",
"format": "alpaca-format-finnish",
"eval_steps": 100.0,
"raw_text_file": "None",
"overlap_len": 128,
"newline_favor_len": 128,
"higher_rank_limit": false,
"warmup_steps": 100.0,
"optimizer": "adamw_torch",
"hard_cut_string": "\\n\\n\\n",
"train_only_after": "",
"stop_at_loss": 0,
"add_eos_token": false,
"min_chars": 0.0,
"report_to": "None"
}
Framework versions
- PEFT 0.8.2