Edit model card

anti_semic_test_trainer_new

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3801
  • Accuracy: 0.8417
  • F1: 0.8571
  • Precision: 0.8143
  • Recall: 0.9048

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 90 0.3758 0.8333 0.8540 0.7697 0.9590
No log 2.0 180 0.3031 0.8542 0.8679 0.8042 0.9426
No log 3.0 270 0.3224 0.8792 0.8880 0.8394 0.9426
No log 4.0 360 0.4631 0.8667 0.8788 0.8169 0.9508
No log 5.0 450 0.3999 0.9042 0.9076 0.8898 0.9262
0.2639 6.0 540 0.6296 0.875 0.8864 0.8239 0.9590
0.2639 7.0 630 0.6210 0.8667 0.8769 0.8261 0.9344

Framework versions

  • Transformers 4.36.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.2
  • Tokenizers 0.15.0
Downloads last month
2
Safetensors
Model size
108M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for mr-rov/anti_semic_test_trainer_new

Finetuned
(1906)
this model