anti_semic_test_trainer_new
This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3801
- Accuracy: 0.8417
- F1: 0.8571
- Precision: 0.8143
- Recall: 0.9048
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 1.0 | 90 | 0.3758 | 0.8333 | 0.8540 | 0.7697 | 0.9590 |
No log | 2.0 | 180 | 0.3031 | 0.8542 | 0.8679 | 0.8042 | 0.9426 |
No log | 3.0 | 270 | 0.3224 | 0.8792 | 0.8880 | 0.8394 | 0.9426 |
No log | 4.0 | 360 | 0.4631 | 0.8667 | 0.8788 | 0.8169 | 0.9508 |
No log | 5.0 | 450 | 0.3999 | 0.9042 | 0.9076 | 0.8898 | 0.9262 |
0.2639 | 6.0 | 540 | 0.6296 | 0.875 | 0.8864 | 0.8239 | 0.9590 |
0.2639 | 7.0 | 630 | 0.6210 | 0.8667 | 0.8769 | 0.8261 | 0.9344 |
Framework versions
- Transformers 4.36.1
- Pytorch 2.0.1+cu117
- Datasets 2.19.2
- Tokenizers 0.15.0
- Downloads last month
- 2
Model tree for mr-rov/anti_semic_test_trainer_new
Base model
google-bert/bert-base-cased