whisper-small-ar / README.md
mrYou's picture
End of training
b25a923 verified
metadata
language:
  - ar
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small ar - younes matrab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: ar
          split: None
          args: 'config: ar, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 61.65413533834586

Whisper Small ar - younes matrab

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8027
  • Wer: 61.6541

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.7188 0.4167 10 2.7773 67.1053
1.6979 0.8333 20 2.4033 66.5414
1.3932 1.25 30 1.9422 66.3534
1.0467 1.6667 40 1.6225 65.2256
0.8824 2.0833 50 1.3586 64.4737
0.5935 2.5 60 1.0915 62.4060
0.4491 2.9167 70 0.8986 63.3459
0.3438 3.3333 80 0.8473 61.6541
0.2915 3.75 90 0.8132 60.1504
0.2391 4.1667 100 0.8027 61.6541

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1