Edit model card

detr_finetuned_trashify_box_detector

This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1302

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
101.8783 1.0 50 7.5132
4.1455 2.0 100 3.0556
2.5964 3.0 150 2.2737
2.2773 4.0 200 2.0691
2.0818 5.0 250 1.8494
1.9253 6.0 300 1.6872
1.7802 7.0 350 1.6033
1.675 8.0 400 1.4511
1.5263 9.0 450 1.4097
1.4322 10.0 500 1.3397
1.386 11.0 550 1.2897
1.3098 12.0 600 1.2813
1.248 13.0 650 1.2096
1.209 14.0 700 1.2200
1.1757 15.0 750 1.1987
1.144 16.0 800 1.1757
1.0732 17.0 850 1.1935
1.0501 18.0 900 1.1531
0.9864 19.0 950 1.1576
0.9941 20.0 1000 1.1513
0.9589 21.0 1050 1.1450
0.9279 22.0 1100 1.1355
0.9071 23.0 1150 1.1233
0.8851 24.0 1200 1.1338
0.8709 25.0 1250 1.1302

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu124
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
88
Safetensors
Model size
43.5M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mrdbourke/detr_finetuned_trashify_box_detector

Finetuned
(46)
this model

Space using mrdbourke/detr_finetuned_trashify_box_detector 1