mrheinen's picture
Update README.md
e16312b verified
metadata
base_model: mrheinen/Gemma2-27b-lophiid
tags:
  - llama-cpp
  - gguf-my-repo
datasets:
  - mrheinen/linux-commands

This is Gemma 27b fine-tuned with https://huggingface.co/datasets/mrheinen/linux-commands

While the normal Gemma will suffice, this version has been fine-tune with more linux commands and was tested with Lophiid to function properly.


base_model: mrheinen/Gemma2-27b-lophiid tags: - llama-cpp - gguf-my-repo

mrheinen/Gemma2-27b-lophiid-Q4_K_M-GGUF

This model was converted to GGUF format from mrheinen/Gemma2-27b-lophiid using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo mrheinen/Gemma2-27b-lophiid-Q4_K_M-GGUF --hf-file gemma2-27b-lophiid-q4_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo mrheinen/Gemma2-27b-lophiid-Q4_K_M-GGUF --hf-file gemma2-27b-lophiid-q4_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo mrheinen/Gemma2-27b-lophiid-Q4_K_M-GGUF --hf-file gemma2-27b-lophiid-q4_k_m.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo mrheinen/Gemma2-27b-lophiid-Q4_K_M-GGUF --hf-file gemma2-27b-lophiid-q4_k_m.gguf -c 2048