license: apache-2.0 | |
tags: | |
- generated_from_trainer | |
datasets: | |
- arxiv_summarization_dataset | |
metrics: | |
- rouge | |
base_model: sshleifer/distilbart-cnn-12-6 | |
model-index: | |
- name: distilbart-cnn-12-6-finetuned-30k-3epoch | |
results: | |
- task: | |
type: text2text-generation | |
name: Sequence-to-sequence Language Modeling | |
dataset: | |
name: arxiv_summarization_dataset | |
type: arxiv_summarization_dataset | |
config: section | |
split: test[:2000] | |
args: section | |
metrics: | |
- type: rouge | |
value: 43.696 | |
name: Rouge1 | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# distilbart-cnn-12-6-finetuned-30k-3epoch | |
This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the arxiv_summarization_dataset dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 2.3411 | |
- Rouge1: 43.696 | |
- Rouge2: 15.6681 | |
- Rougel: 25.6889 | |
- Rougelsum: 38.574 | |
- Gen Len: 121.98 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 8 | |
- eval_batch_size: 8 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 3 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | | |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | |
| 2.7304 | 1.0 | 3750 | 2.4322 | 43.0913 | 15.1302 | 25.2555 | 38.0346 | 122.3755 | | |
| 2.3518 | 2.0 | 7500 | 2.3613 | 43.8799 | 15.6977 | 25.6984 | 38.7646 | 122.6945 | | |
| 2.2318 | 3.0 | 11250 | 2.3411 | 43.696 | 15.6681 | 25.6889 | 38.574 | 121.98 | | |
### Framework versions | |
- Transformers 4.30.2 | |
- Pytorch 2.0.0 | |
- Datasets 2.1.0 | |
- Tokenizers 0.13.3 | |