mrm8488's picture
Update README.md
0cdfb3d verified
|
raw
history blame
2.33 kB
metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
  - f1
model-index:
  - name: deberta-v3-ft-news-sentiment-analisys
    results: []

deberta-v3-ft-news-sentiment-analisys

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0233
  • Precision: 0.9940
  • Recall: 0.9940
  • Accuracy: 0.9940
  • F1: 0.9940

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall Accuracy F1
No log 1.0 214 0.1865 0.9323 0.9323 0.9323 0.9323
No log 2.0 428 0.0742 0.9771 0.9771 0.9771 0.9771
0.2737 3.0 642 0.0479 0.9855 0.9855 0.9855 0.9855
0.2737 4.0 856 0.0284 0.9923 0.9923 0.9923 0.9923
0.0586 5.0 1070 0.0233 0.9940 0.9940 0.9940 0.9940

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0

Citation

@misc {manuel_romero_2024,
    author       = { {Manuel Romero} },
    title        = { deberta-v3-ft-financial-news-sentiment-analysis (Revision 7430ace) },
    year         = 2024,
    url          = { https://huggingface.co/mrm8488/deberta-v3-ft-financial-news-sentiment-analysis },
    doi          = { 10.57967/hf/1666 },
    publisher    = { Hugging Face }
}