metadata
language:
- en
license: mit
tags:
- generated_from_trainer
- deberta-v3
datasets:
- nyu-mll/glue
metrics:
- accuracy
- f1
model-index:
- name: deberta-v3-small
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- type: accuracy
value: 0.8921568627450981
name: Accuracy
- type: f1
value: 0.9233449477351917
name: F1
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: mrpc
split: validation
metrics:
- type: accuracy
value: 0.8921568627450981
name: Accuracy
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmQ3MjM2NTJiZjJmM2UxYTlmMDczOTQ2MjY4OTdhZTAyM2RiMTc2YjZiNWIwZDk1ZGUxMjgzMDBiOWVjZTQ4OCIsInZlcnNpb24iOjF9.yerN7Izy0yT3ykyO3t5Mr-TO3oxpTMfijCWJKnA_XO_rt81LP3-9qbqknXur6ahHqKN-1BLtr_fmAu0-IPQyDA
- type: precision
value: 0.8983050847457628
name: Precision
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWQxODVmYTM4OThlMjNhY2MzZTBhMWJmMmNjMDMyYjYyNzc4NWI3YzJjZDkzMTcyOWEwN2IxOWYyOGQ5NTY5MSIsInZlcnNpb24iOjF9.cfqvd8wnSqhHj5fKlIb6JN9He8ooAu94tFJytw2I93qqGSVvaTktM0Ib_DqPuHYneGY1DGbgb6Nsl90DiZSMCQ
- type: recall
value: 0.9498207885304659
name: Recall
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjg3Y2Y1NGY0NTRjMWFhYTAxMWYxMTcxNWM2ZDU5NGY1ZTk3OTJmZWQyYmIzMGJiZWQ0YWQ2MjNhOGU2MGU0ZCIsInZlcnNpb24iOjF9.jj7VNaWQU3u3tnngqCixlfkwF8h6ykzvHm4tgezJe1pacAU0Tsugn7IPvAJTrvNE0sU8_Q7dm-C_UKQGzmlIBw
- type: auc
value: 0.9516129032258065
name: AUC
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDhkOTQ0ZmVlYTYwNTdjY2IxYTM5ZThhYzgzZWMxMGQzMThmZDkwNTcyMWZiNzg4Y2I3NjZhMzVjYmNmN2FlZiIsInZlcnNpb24iOjF9.28hOJFgnyNHXMpaFbNTEcolUcuNVqrXNSuT6hTs2vrjlAIWVnzxUfaHjH2kVYh1-sOSNSE9maetd1CtQ7i78CQ
- type: f1
value: 0.9233449477351917
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmY0ZWE5Y2Q5YmZlOWM4OTU0OGIwOWEwNDk3MTlkYTY5YzgwMjQwNDFjYWU4ZDdmZWY4Nzc0MzQzMTM2YTRhYyIsInZlcnNpb24iOjF9.NymiR2fVXaI6ytAGZFM8HuQLxTJlxuUsWziVNaauyuJ9xfOLOGVJ6VI_H7CoBwc-pZKbKiQOvtfpOGwt1J22CA
- type: loss
value: 0.2787226438522339
name: loss
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGNhMDgyMGI3ZWI4NDVkYzM0NjE1ZTk0YjczYzU4NmRhOGYxM2RlMjU3YThhY2QzNmU3NmJhM2IzMWI5MDMwNyIsInZlcnNpb24iOjF9.HFdpBkvu0671KUgkOtpSgeGBr3wU7g51zVt3-wEwVWhS4hMX4oPFAqF4JBxFx3mgbGjTDiRQ2xiA5lm0UnkdCg
DeBERTa v3 (small) fine-tuned on MRPC
This model is a fine-tuned version of microsoft/deberta-v3-small on the GLUE MRPC dataset. It achieves the following results on the evaluation set:
- Loss: 0.2787
- Accuracy: 0.8922
- F1: 0.9233
- Combined Score: 0.9078
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
No log | 1.0 | 230 | 0.2787 | 0.8922 | 0.9233 | 0.9078 |
No log | 2.0 | 460 | 0.3651 | 0.875 | 0.9137 | 0.8944 |
No log | 3.0 | 690 | 0.5238 | 0.8799 | 0.9179 | 0.8989 |
No log | 4.0 | 920 | 0.4712 | 0.8946 | 0.9222 | 0.9084 |
0.2147 | 5.0 | 1150 | 0.5704 | 0.8946 | 0.9262 | 0.9104 |
0.2147 | 6.0 | 1380 | 0.5697 | 0.8995 | 0.9284 | 0.9140 |
0.2147 | 7.0 | 1610 | 0.6651 | 0.8922 | 0.9214 | 0.9068 |
0.2147 | 8.0 | 1840 | 0.6726 | 0.8946 | 0.9239 | 0.9093 |
0.0183 | 9.0 | 2070 | 0.7250 | 0.8848 | 0.9177 | 0.9012 |
0.0183 | 10.0 | 2300 | 0.7093 | 0.8922 | 0.9223 | 0.9072 |
Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3