|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:1K<n<10K |
|
- loss:MatryoshkaLoss |
|
- loss:CoSENTLoss |
|
base_model: intfloat/multilingual-e5-large |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: El hombre captura una pelota |
|
sentences: |
|
- Un hombre lanza una pelota en el aire. |
|
- Un hombre está acompañando a una mujer en el camino. |
|
- Dos mujeres están cantando una hermosa canción. |
|
- source_sentence: La mujer está cortando papas. |
|
sentences: |
|
- Una mujer está cortando patatas. |
|
- Los patos blancos se encuentran parados en el suelo. |
|
- Hay una banda tocando en el escenario principal. |
|
- source_sentence: Un hombre está buscando algo. |
|
sentences: |
|
- En un mercado de granjeros, se encuentra un hombre. |
|
- Romney filmó en una reunión privada de financiadores |
|
- Dos perros de color negro están jugando en la hierba. |
|
- source_sentence: Un hombre saltando la cuerda. |
|
sentences: |
|
- Un hombre está saltando la cuerda. |
|
- La capital de Siria fue golpeada por dos explosiones |
|
- Los gatitos están comiendo de los platos. |
|
- source_sentence: El avión está tocando tierra. |
|
sentences: |
|
- El avión animado se encuentra en proceso de aterrizaje. |
|
- Un pequeño niño montado en un columpio en el parque. |
|
- Una persona de sexo femenino está cortando una cebolla. |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on intfloat/multilingual-e5-large |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 768 |
|
type: sts-dev-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8382359637067547 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8429605562993187 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8336600898033378 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8448900621318144 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8328580183902631 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8441561677427524 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.8287262441829462 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.8322746204974042 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8382359637067547 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8448900621318144 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 512 |
|
type: sts-dev-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8334610747047482 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8405630189692351 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8316848819512679 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8426142019940397 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8305903222472721 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8415256700272777 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.8172993617433827 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.823043401157181 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8334610747047482 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8426142019940397 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 256 |
|
type: sts-dev-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8240056098321313 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8355774999921849 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8261458415991961 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8355100986320139 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.825647934422587 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8362336344962497 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7924886689283153 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7992788592975302 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8261458415991961 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8362336344962497 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 128 |
|
type: sts-dev-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8098656853945027 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8304511476467773 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8208946291392102 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8308359029901535 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8195023110971954 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8302481276550623 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7412744037070784 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7489986968697009 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8208946291392102 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8308359029901535 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 64 |
|
type: sts-dev-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7777717898212414 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8152005256760807 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8007095698339157 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8116493253806699 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8000905317852872 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8110794468804238 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6540905690432955 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6589924104221199 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8007095698339157 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8152005256760807 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 32 |
|
type: sts-dev-32 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7276908730898617 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7805691037554072 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7659952363354546 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7751944660837697 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7674462214503804 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7773298298599879 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5395044219284906 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5341543426421572 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7674462214503804 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.7805691037554072 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 16 |
|
type: sts-dev-16 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6737235484120327 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7425360948217027 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7187007732867645 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7279621825071231 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7234911258158329 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7374355146279606 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.44701957007430754 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.44243975098384164 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7234911258158329 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.7425360948217027 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 768 |
|
type: sts-test-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8637130740455785 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8774757245850818 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8739327947840198 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8771247494149252 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8742964420051067 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8774039769000851 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.8587248460103846 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.8692624735733635 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8742964420051067 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8774757245850818 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 512 |
|
type: sts-test-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8608902316971913 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8761454408181157 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8723366100239835 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8755119028724399 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8727143818945785 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8758699632438892 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.8498181878456328 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.8568165420931783 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8727143818945785 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8761454408181157 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8546354043013908 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.871536658256446 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8697716394077537 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8737030599161743 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.86989853825415 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8736845554686979 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.8131428680674924 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.8076436370339797 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.86989853825415 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8737030599161743 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8387977115140051 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8645489592292456 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8611375341227384 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8667215229295422 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.862154474303328 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8680162798983022 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7492475609746636 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7363955675375832 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.862154474303328 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8680162798983022 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8168102869303625 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8585329796388539 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8518107264951738 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8606717941407515 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8533959511853835 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8623753165991692 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6646337116783656 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6473141838302237 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8533959511853835 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8623753165991692 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 32 |
|
type: sts-test-32 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7813945227753345 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8424823964509079 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8315336527432531 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8431756901550471 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8345328653107531 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8466076672836096 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5520860449837447 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5319238671245338 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8345328653107531 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8466076672836096 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 16 |
|
type: sts-test-16 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7198004009567176 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8072120165730962 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7805727606105963 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7997833060148871 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7879106231813758 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8090073332632988 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.44957276876149327 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.4411623904572447 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7879106231813758 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8090073332632988 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on intfloat/multilingual-e5-large |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on an augmented version of `stsb_multi_es` dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision ab10c1a7f42e74530fe7ae5be82e6d4f11a719eb --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- stsb_multi_es_aug |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("mrm8488/multilingual-e5-large-ft-sts-spanish-matryoshka-768-16-5e") |
|
# Run inference |
|
sentences = [ |
|
'El avión está tocando tierra.', |
|
'El avión animado se encuentra en proceso de aterrizaje.', |
|
'Un pequeño niño montado en un columpio en el parque.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.8382 | |
|
| **spearman_cosine** | **0.843** | |
|
| pearson_manhattan | 0.8337 | |
|
| spearman_manhattan | 0.8449 | |
|
| pearson_euclidean | 0.8329 | |
|
| spearman_euclidean | 0.8442 | |
|
| pearson_dot | 0.8287 | |
|
| spearman_dot | 0.8323 | |
|
| pearson_max | 0.8382 | |
|
| spearman_max | 0.8449 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8335 | |
|
| **spearman_cosine** | **0.8406** | |
|
| pearson_manhattan | 0.8317 | |
|
| spearman_manhattan | 0.8426 | |
|
| pearson_euclidean | 0.8306 | |
|
| spearman_euclidean | 0.8415 | |
|
| pearson_dot | 0.8173 | |
|
| spearman_dot | 0.823 | |
|
| pearson_max | 0.8335 | |
|
| spearman_max | 0.8426 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.824 | |
|
| **spearman_cosine** | **0.8356** | |
|
| pearson_manhattan | 0.8261 | |
|
| spearman_manhattan | 0.8355 | |
|
| pearson_euclidean | 0.8256 | |
|
| spearman_euclidean | 0.8362 | |
|
| pearson_dot | 0.7925 | |
|
| spearman_dot | 0.7993 | |
|
| pearson_max | 0.8261 | |
|
| spearman_max | 0.8362 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8099 | |
|
| **spearman_cosine** | **0.8305** | |
|
| pearson_manhattan | 0.8209 | |
|
| spearman_manhattan | 0.8308 | |
|
| pearson_euclidean | 0.8195 | |
|
| spearman_euclidean | 0.8302 | |
|
| pearson_dot | 0.7413 | |
|
| spearman_dot | 0.749 | |
|
| pearson_max | 0.8209 | |
|
| spearman_max | 0.8308 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7778 | |
|
| **spearman_cosine** | **0.8152** | |
|
| pearson_manhattan | 0.8007 | |
|
| spearman_manhattan | 0.8116 | |
|
| pearson_euclidean | 0.8001 | |
|
| spearman_euclidean | 0.8111 | |
|
| pearson_dot | 0.6541 | |
|
| spearman_dot | 0.659 | |
|
| pearson_max | 0.8007 | |
|
| spearman_max | 0.8152 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-32` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7277 | |
|
| **spearman_cosine** | **0.7806** | |
|
| pearson_manhattan | 0.766 | |
|
| spearman_manhattan | 0.7752 | |
|
| pearson_euclidean | 0.7674 | |
|
| spearman_euclidean | 0.7773 | |
|
| pearson_dot | 0.5395 | |
|
| spearman_dot | 0.5342 | |
|
| pearson_max | 0.7674 | |
|
| spearman_max | 0.7806 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-16` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6737 | |
|
| **spearman_cosine** | **0.7425** | |
|
| pearson_manhattan | 0.7187 | |
|
| spearman_manhattan | 0.728 | |
|
| pearson_euclidean | 0.7235 | |
|
| spearman_euclidean | 0.7374 | |
|
| pearson_dot | 0.447 | |
|
| spearman_dot | 0.4424 | |
|
| pearson_max | 0.7235 | |
|
| spearman_max | 0.7425 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8637 | |
|
| **spearman_cosine** | **0.8775** | |
|
| pearson_manhattan | 0.8739 | |
|
| spearman_manhattan | 0.8771 | |
|
| pearson_euclidean | 0.8743 | |
|
| spearman_euclidean | 0.8774 | |
|
| pearson_dot | 0.8587 | |
|
| spearman_dot | 0.8693 | |
|
| pearson_max | 0.8743 | |
|
| spearman_max | 0.8775 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8609 | |
|
| **spearman_cosine** | **0.8761** | |
|
| pearson_manhattan | 0.8723 | |
|
| spearman_manhattan | 0.8755 | |
|
| pearson_euclidean | 0.8727 | |
|
| spearman_euclidean | 0.8759 | |
|
| pearson_dot | 0.8498 | |
|
| spearman_dot | 0.8568 | |
|
| pearson_max | 0.8727 | |
|
| spearman_max | 0.8761 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8546 | |
|
| **spearman_cosine** | **0.8715** | |
|
| pearson_manhattan | 0.8698 | |
|
| spearman_manhattan | 0.8737 | |
|
| pearson_euclidean | 0.8699 | |
|
| spearman_euclidean | 0.8737 | |
|
| pearson_dot | 0.8131 | |
|
| spearman_dot | 0.8076 | |
|
| pearson_max | 0.8699 | |
|
| spearman_max | 0.8737 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8388 | |
|
| **spearman_cosine** | **0.8645** | |
|
| pearson_manhattan | 0.8611 | |
|
| spearman_manhattan | 0.8667 | |
|
| pearson_euclidean | 0.8622 | |
|
| spearman_euclidean | 0.868 | |
|
| pearson_dot | 0.7492 | |
|
| spearman_dot | 0.7364 | |
|
| pearson_max | 0.8622 | |
|
| spearman_max | 0.868 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8168 | |
|
| **spearman_cosine** | **0.8585** | |
|
| pearson_manhattan | 0.8518 | |
|
| spearman_manhattan | 0.8607 | |
|
| pearson_euclidean | 0.8534 | |
|
| spearman_euclidean | 0.8624 | |
|
| pearson_dot | 0.6646 | |
|
| spearman_dot | 0.6473 | |
|
| pearson_max | 0.8534 | |
|
| spearman_max | 0.8624 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-32` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7814 | |
|
| **spearman_cosine** | **0.8425** | |
|
| pearson_manhattan | 0.8315 | |
|
| spearman_manhattan | 0.8432 | |
|
| pearson_euclidean | 0.8345 | |
|
| spearman_euclidean | 0.8466 | |
|
| pearson_dot | 0.5521 | |
|
| spearman_dot | 0.5319 | |
|
| pearson_max | 0.8345 | |
|
| spearman_max | 0.8466 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-16` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7198 | |
|
| **spearman_cosine** | **0.8072** | |
|
| pearson_manhattan | 0.7806 | |
|
| spearman_manhattan | 0.7998 | |
|
| pearson_euclidean | 0.7879 | |
|
| spearman_euclidean | 0.809 | |
|
| pearson_dot | 0.4496 | |
|
| spearman_dot | 0.4412 | |
|
| pearson_max | 0.7879 | |
|
| spearman_max | 0.809 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### stsb_multi_es_aug |
|
|
|
* Dataset: stsb_multi_es_aug |
|
* Size: 2,697 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 8 tokens</li><li>mean: 22.25 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 22.01 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.67</li><li>max: 5.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------| |
|
| <code>El pájaro de tamaño reducido se posó con delicadeza en una rama cubierta de escarcha.</code> | <code>Un ave de color amarillo descansaba tranquilamente en una rama.</code> | <code>3.200000047683716</code> | |
|
| <code>Una chica está tocando la flauta en un parque.</code> | <code>Un grupo de músicos está tocando en un escenario al aire libre.</code> | <code>1.286</code> | |
|
| <code>La aclamada escritora británica, Doris Lessing, galardonada con el premio Nobel, fallece</code> | <code>La destacada autora británica, Doris Lessing, reconocida con el prestigioso Premio Nobel, muere</code> | <code>4.199999809265137</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "CoSENTLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64, |
|
32, |
|
16 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### stsb_multi_es_aug |
|
|
|
* Dataset: stsb_multi_es_aug |
|
* Size: 697 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 8 tokens</li><li>mean: 22.76 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 22.26 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.3</li><li>max: 5.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------| |
|
| <code>Un incendio ocurrido en un hospital psiquiátrico ruso resultó en la trágica muerte de 38 personas.</code> | <code>Se teme que el incendio en un hospital psiquiátrico ruso cause la pérdida de la vida de 38 individuos.</code> | <code>4.199999809265137</code> | |
|
| <code>"Street dijo que el otro individuo a veces se siente avergonzado de su fiesta, lo cual provoca risas en la multitud"</code> | <code>"A veces, el otro tipo se encuentra avergonzado de su fiesta y no se le puede culpar."</code> | <code>3.5</code> | |
|
| <code>El veterano diplomático de Malasia tuvo un encuentro con Suu Kyi el miércoles en la casa del lago en Yangon donde permanece bajo arresto domiciliario.</code> | <code>Razali Ismail tuvo una reunión de 90 minutos con Suu Kyi, quien ganó el Premio Nobel de la Paz en 1991, en su casa del lago donde está recluida.</code> | <code>3.691999912261963</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "CoSENTLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64, |
|
32, |
|
16 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 5 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-16_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-32_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-16_spearman_cosine | sts-test-256_spearman_cosine | sts-test-32_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |
|
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| |
|
| 0.5917 | 100 | 30.7503 | 30.6172 | 0.8117 | 0.7110 | 0.8179 | 0.7457 | 0.8244 | 0.7884 | 0.8252 | - | - | - | - | - | - | - | |
|
| 1.1834 | 200 | 30.4696 | 32.6422 | 0.7952 | 0.7198 | 0.8076 | 0.7491 | 0.8125 | 0.7813 | 0.8142 | - | - | - | - | - | - | - | |
|
| 1.7751 | 300 | 29.9233 | 31.5469 | 0.8152 | 0.7435 | 0.8250 | 0.7737 | 0.8302 | 0.8006 | 0.8305 | - | - | - | - | - | - | - | |
|
| 2.3669 | 400 | 29.0716 | 31.8088 | 0.8183 | 0.7405 | 0.8248 | 0.7758 | 0.8299 | 0.8057 | 0.8324 | - | - | - | - | - | - | - | |
|
| 2.9586 | 500 | 28.7971 | 32.6032 | 0.8176 | 0.7430 | 0.8241 | 0.7777 | 0.8289 | 0.8025 | 0.8316 | - | - | - | - | - | - | - | |
|
| 3.5503 | 600 | 27.4766 | 34.7911 | 0.8241 | 0.7400 | 0.8314 | 0.7730 | 0.8369 | 0.8061 | 0.8394 | - | - | - | - | - | - | - | |
|
| 4.1420 | 700 | 27.0639 | 35.7418 | 0.8294 | 0.7466 | 0.8354 | 0.7784 | 0.8389 | 0.8107 | 0.8409 | - | - | - | - | - | - | - | |
|
| 4.7337 | 800 | 26.5119 | 36.2014 | 0.8305 | 0.7425 | 0.8356 | 0.7806 | 0.8406 | 0.8152 | 0.8430 | - | - | - | - | - | - | - | |
|
| 5.0 | 845 | - | - | - | - | - | - | - | - | - | 0.8645 | 0.8072 | 0.8715 | 0.8425 | 0.8761 | 0.8585 | 0.8775 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.41.1 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### CoSENTLoss |
|
```bibtex |
|
@online{kexuefm-8847, |
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
author={Su Jianlin}, |
|
year={2022}, |
|
month={Jan}, |
|
url={https://kexue.fm/archives/8847}, |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |