Edit model card

T5-base fine-tuned for Sentiment Anlalysis πŸŽžοΈπŸ‘πŸ‘Ž

Google's T5 base fine-tuned on IMDB dataset for Sentiment Analysis downstream task.

Details of T5

The T5 model was presented in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu in Here the abstract:

Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new β€œColossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.

model image

Details of the downstream task (Sentiment analysis) - Dataset πŸ“š

IMDB

This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing.

Model fine-tuning πŸ‹οΈβ€

The training script is a slightly modified version of this Colab Notebook created by Suraj Patil, so all credits to him!

Test set metrics 🧾

           |precision | recall  | f1-score |support|
|----------|----------|---------|----------|-------|
|negative  |     0.95 |     0.95|      0.95|  12500|
|positive  |     0.95 |     0.95|      0.95|  12500|
|----------|----------|---------|----------|-------|
|accuracy|            |         |      0.95|  25000|
|macro avg|       0.95|     0.95|      0.95|  25000|
|weighted avg|    0.95|     0.95|     0.95 |  25000|

Model in Action πŸš€

from transformers import AutoTokenizer, AutoModelWithLMHead

tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-imdb-sentiment")

model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-imdb-sentiment")

def get_sentiment(text):
  input_ids = tokenizer.encode(text + '</s>', return_tensors='pt')

  output = model.generate(input_ids=input_ids,
               max_length=2)
  
  dec = [tokenizer.decode(ids) for ids in output]
  label = dec[0]
  return label
  
get_sentiment("I dislike a lot that film")

# Output: 'negative'

Created by Manuel Romero/@mrm8488 | LinkedIn

Made with β™₯ in Spain

Downloads last month
275
Safetensors
Model size
223M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train mrm8488/t5-base-finetuned-imdb-sentiment

Space using mrm8488/t5-base-finetuned-imdb-sentiment 1