dictabert_ner / README.md
msperka's picture
msperka/bert-finetuned-ner
db09fbb
metadata
license: cc-by-4.0
base_model: dicta-il/dictabert
tags:
  - generated_from_trainer
datasets:
  - nemo_corpus
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: nemo_corpus
          type: nemo_corpus
          config: flat_token
          split: validation
          args: flat_token
        metrics:
          - name: Precision
            type: precision
            value: 0.8606811145510835
          - name: Recall
            type: recall
            value: 0.852760736196319
          - name: F1
            type: f1
            value: 0.8567026194144837
          - name: Accuracy
            type: accuracy
            value: 0.9786301369863014

bert-finetuned-ner

This model is a fine-tuned version of dicta-il/dictabert on the nemo_corpus dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1102
  • Precision: 0.8607
  • Recall: 0.8528
  • F1: 0.8567
  • Accuracy: 0.9786

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2884 1.0 618 0.1202 0.8182 0.8006 0.8093 0.9733
0.0896 2.0 1236 0.1081 0.8298 0.8374 0.8336 0.9771
0.0548 3.0 1854 0.1102 0.8607 0.8528 0.8567 0.9786

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1+cpu
  • Datasets 2.15.0
  • Tokenizers 0.15.0