See axolotl config
axolotl version: 0.5.0
base_model: Qwen/Qwen2.5-14B-Instruct
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: output.jsonl
type: alpaca
special_tokens:
bos_token:
eos_token: "<|im_end|>"
pad_token: "<|endoftext|>"
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: axolotl_gmatrix
wandb_entity: mssong
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 3
optimizer:
lr_scheduler: cosine
learning_rate: 0.00006
train_on_inputs:
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience: 4
local_rank:
logging_steps: 100
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
#warmup_steps: 100
eval_steps: 100
save_steps: 100
save_total_limit: 2
eval_sample_packing:
debug:
deepspeed:
weight_decay: 0.01
fsdp:
fsdp_config:
trust_remote_code: true
outputs/lora-out
This model is a fine-tuned version of Qwen/Qwen2.5-14B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0875
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 162
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0009 | 1 | 0.4243 |
0.2465 | 0.0923 | 100 | 0.1338 |
0.0425 | 0.1847 | 200 | 0.1110 |
0.0333 | 0.2770 | 300 | 0.1051 |
0.0319 | 0.3693 | 400 | 0.0933 |
0.0257 | 0.4617 | 500 | 0.0886 |
0.0245 | 0.5540 | 600 | 0.0898 |
0.0262 | 0.6464 | 700 | 0.0889 |
0.025 | 0.7387 | 800 | 0.0827 |
0.0221 | 0.8310 | 900 | 0.0813 |
0.0207 | 0.9234 | 1000 | 0.0901 |
0.0219 | 1.0157 | 1100 | 0.0878 |
0.0132 | 1.1080 | 1200 | 0.0890 |
0.0154 | 1.2004 | 1300 | 0.0875 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.3
- Downloads last month
- 4