fine-tuned-DatasetQAS-IDK-MRC-with-indobert-large-p2-with-ITTL-with-freeze-LR-1e-05
This model is a fine-tuned version of indobenchmark/indobert-large-p2 on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2708
- Exact Match: 52.7487
- F1: 60.8071
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Exact Match |
F1 |
6.4745 |
0.49 |
36 |
2.5724 |
35.6021 |
37.8405 |
3.5197 |
0.98 |
72 |
1.9912 |
28.0105 |
35.4278 |
2.1756 |
1.48 |
108 |
1.6669 |
35.7330 |
43.0612 |
2.1756 |
1.97 |
144 |
1.5047 |
39.3979 |
46.1664 |
1.6725 |
2.46 |
180 |
1.3222 |
45.9424 |
52.9355 |
1.336 |
2.95 |
216 |
1.3205 |
44.1099 |
51.6851 |
1.176 |
3.45 |
252 |
1.2526 |
47.5131 |
55.3298 |
1.176 |
3.94 |
288 |
1.2778 |
47.3822 |
54.7110 |
1.1089 |
4.44 |
324 |
1.2291 |
49.8691 |
57.2303 |
0.967 |
4.93 |
360 |
1.1944 |
52.4869 |
60.2202 |
0.967 |
5.42 |
396 |
1.2122 |
53.7958 |
61.3033 |
0.9202 |
5.91 |
432 |
1.2348 |
54.0576 |
61.6263 |
0.8719 |
6.41 |
468 |
1.2206 |
55.2356 |
62.9267 |
0.8205 |
6.9 |
504 |
1.2472 |
53.9267 |
61.6359 |
0.8205 |
7.4 |
540 |
1.2764 |
52.3560 |
60.2681 |
0.7907 |
7.89 |
576 |
1.2382 |
55.3665 |
63.0145 |
0.7533 |
8.38 |
612 |
1.2812 |
52.4869 |
60.4214 |
0.7533 |
8.87 |
648 |
1.2474 |
53.1414 |
60.6338 |
0.7345 |
9.37 |
684 |
1.2708 |
52.7487 |
60.8071 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2