fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-base-uncased-with-ITTL-with-freeze-LR-1e-05
This model is a fine-tuned version of indolem/indobert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3132
- Exact Match: 53.2628
- F1: 68.3641
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Exact Match |
F1 |
6.3129 |
0.5 |
19 |
3.9006 |
5.6437 |
16.4748 |
6.3129 |
1.0 |
38 |
2.8272 |
17.1076 |
30.0839 |
3.8917 |
1.5 |
57 |
2.4681 |
18.8713 |
32.8962 |
3.8917 |
2.0 |
76 |
2.2891 |
25.3968 |
38.0874 |
3.8917 |
2.5 |
95 |
2.1835 |
26.9841 |
39.5053 |
2.3963 |
3.0 |
114 |
2.0885 |
28.5714 |
42.0243 |
2.3963 |
3.5 |
133 |
1.9971 |
32.4515 |
45.4085 |
2.112 |
4.0 |
152 |
1.9124 |
34.3915 |
48.2893 |
2.112 |
4.5 |
171 |
1.8358 |
37.0370 |
50.6492 |
2.112 |
5.0 |
190 |
1.7545 |
40.7407 |
54.7031 |
1.8205 |
5.5 |
209 |
1.6432 |
44.4444 |
58.2669 |
1.8205 |
6.0 |
228 |
1.5589 |
46.9136 |
60.8052 |
1.8205 |
6.5 |
247 |
1.4861 |
48.1481 |
62.5185 |
1.573 |
7.0 |
266 |
1.4381 |
49.7354 |
64.1985 |
1.573 |
7.5 |
285 |
1.3944 |
51.6755 |
66.0223 |
1.387 |
8.0 |
304 |
1.3534 |
53.2628 |
67.6841 |
1.387 |
8.5 |
323 |
1.3384 |
53.0864 |
67.8619 |
1.387 |
9.0 |
342 |
1.3344 |
52.9101 |
68.0618 |
1.2998 |
9.5 |
361 |
1.3182 |
53.2628 |
68.4149 |
1.2998 |
10.0 |
380 |
1.3132 |
53.2628 |
68.3641 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2