librarian-bot's picture
Librarian Bot: Add base_model information to model
166d798
|
raw
history blame
3.97 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - wikiann
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: bert-base-uncased
model-index:
  - name: bert-base-uncased-tajik-ner
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: wikiann
          type: wikiann
          config: tg
          split: train+test
          args: tg
        metrics:
          - type: precision
            value: 0.5042016806722689
            name: Precision
          - type: recall
            value: 0.5769230769230769
            name: Recall
          - type: f1
            value: 0.5381165919282511
            name: F1
          - type: accuracy
            value: 0.848129958443521
            name: Accuracy

bert-base-uncased-tajik-ner

This model is a fine-tuned version of bert-base-uncased on the wikiann dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2137
  • Precision: 0.5042
  • Recall: 0.5769
  • F1: 0.5381
  • Accuracy: 0.8481

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.0 50 0.9499 0.0450 0.0962 0.0613 0.6626
No log 4.0 100 0.7348 0.1549 0.2115 0.1789 0.7401
No log 6.0 150 0.6685 0.1916 0.3077 0.2362 0.8017
No log 8.0 200 0.7875 0.3923 0.4904 0.4359 0.8036
No log 10.0 250 0.7495 0.4225 0.5769 0.4878 0.8274
No log 12.0 300 0.8934 0.4198 0.5288 0.4681 0.8085
No log 14.0 350 0.9455 0.4758 0.5673 0.5175 0.8236
No log 16.0 400 0.9469 0.5893 0.6346 0.6111 0.8410
No log 18.0 450 0.9936 0.5333 0.6154 0.5714 0.8485
0.2726 20.0 500 0.9804 0.5 0.6058 0.5478 0.8519
0.2726 22.0 550 1.1035 0.5963 0.625 0.6103 0.8432
0.2726 24.0 600 1.0318 0.5856 0.625 0.6047 0.8576
0.2726 26.0 650 1.1820 0.4921 0.5962 0.5391 0.8221
0.2726 28.0 700 1.1204 0.4878 0.5769 0.5286 0.8311
0.2726 30.0 750 1.1911 0.5357 0.5769 0.5556 0.8376
0.2726 32.0 800 1.1747 0.5259 0.5865 0.5545 0.8394
0.2726 34.0 850 1.1403 0.5872 0.6154 0.6009 0.8542
0.2726 36.0 900 1.1824 0.5370 0.5577 0.5472 0.8330
0.2726 38.0 950 1.1467 0.5424 0.6154 0.5766 0.8440
0.003 40.0 1000 1.2148 0.5268 0.5673 0.5463 0.8360
0.003 42.0 1050 1.3478 0.5273 0.5577 0.5421 0.8266
0.003 44.0 1100 1.2137 0.5042 0.5769 0.5381 0.8481

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1