metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- f1
model-index:
- name: bert_uncased_L-2_H-128_A-2-finetuned-emotion-finetuned-tweet
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: train
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.87168
- name: F1
type: f1
value: 0.8716747437975058
bert_uncased_L-2_H-128_A-2-finetuned-emotion-finetuned-tweet
This model is a fine-tuned version of muhtasham/bert_uncased_L-2_H-128_A-2-finetuned-emotion on the imdb dataset. It achieves the following results on the evaluation set:
- Loss: 0.4004
- Accuracy: 0.8717
- F1: 0.8717
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.4751 | 1.28 | 500 | 0.3880 | 0.828 | 0.8277 |
0.3453 | 2.56 | 1000 | 0.3282 | 0.8608 | 0.8607 |
0.2973 | 3.84 | 1500 | 0.3140 | 0.8695 | 0.8695 |
0.26 | 5.12 | 2000 | 0.3154 | 0.8736 | 0.8735 |
0.2218 | 6.39 | 2500 | 0.3144 | 0.8756 | 0.8756 |
0.1977 | 7.67 | 3000 | 0.3197 | 0.876 | 0.8760 |
0.1656 | 8.95 | 3500 | 0.3526 | 0.8737 | 0.8735 |
0.1404 | 10.23 | 4000 | 0.3865 | 0.8691 | 0.8689 |
0.121 | 11.51 | 4500 | 0.4004 | 0.8717 | 0.8717 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.0
- Tokenizers 0.13.2