|
--- |
|
license: apache-2.0 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.0340 |
|
- Rouge1: 17.354 |
|
- Rouge2: 8.4787 |
|
- Rougel: 17.1305 |
|
- Rougelsum: 17.0075 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 7.0197 | 1.0 | 1209 | 3.3037 | 13.683 | 5.3875 | 13.0828 | 13.1122 | |
|
| 3.9145 | 2.0 | 2418 | 3.1418 | 15.5264 | 7.4742 | 14.8131 | 14.7471 | |
|
| 3.5987 | 3.0 | 3627 | 3.0970 | 17.4004 | 8.5468 | 16.8991 | 16.8763 | |
|
| 3.4274 | 4.0 | 4836 | 3.0672 | 16.7503 | 7.9732 | 16.2399 | 16.1352 | |
|
| 3.3241 | 5.0 | 6045 | 3.0648 | 16.6407 | 8.1366 | 16.4552 | 16.3217 | |
|
| 3.2468 | 6.0 | 7254 | 3.0444 | 17.2806 | 8.6183 | 17.0437 | 16.8567 | |
|
| 3.2116 | 7.0 | 8463 | 3.0370 | 17.6282 | 8.6565 | 17.2977 | 17.2007 | |
|
| 3.1821 | 8.0 | 9672 | 3.0340 | 17.354 | 8.4787 | 17.1305 | 17.0075 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|