mwitiderrick's picture
Update README.md
7593825
|
raw
history blame
2.31 kB
metadata
base_model: openlm-research/open_llama_3b
datasets:
  - mwitiderrick/AlpacaCode
inference: true
model_type: llama
prompt_template: |
  ### Instruction:\n
  {prompt}
  ### Response:
created_by: mwitiderrick
tags:
  - transformers
license: apache-2.0
language:
  - en
library_name: transformers
pipeline_tag: text-generation
model-index:
  - name: mwitiderrick/open_llama_3b_instruct_v_0.2
    results:
      - task:
          type: text-generation
        dataset:
          name: hellaswag
          type: hellaswag
        metrics:
          - name: hellaswag(0-Shot)
            type: hellaswag (0-Shot)
            value: 0.4882
      - task:
          type: text-generation
        dataset:
          name: winogrande
          type: winogrande
        metrics:
          - name: winogrande(0-Shot)
            type: winogrande (0-Shot)
            value: 0.6133
      - task:
          type: text-generation
        dataset:
          name: arc_challenge
          type: arc_challenge
        metrics:
          - name: arc_challenge(0-Shot)
            type: arc_challenge (0-Shot)
            value: 0.3362
        source:
          name: open_llama_3b_instruct_v_0.2 model card
          url: https://huggingface.co/mwitiderrick/open_llama_3b_instruct_v_0.2

OpenLLaMA Code Instruct: An Open Reproduction of LLaMA

This is an OpenLlama model that has been fine-tuned on 1 epoch of the AlpacaCode dataset.

The modified version of the dataset can be found here

Prompt Template

### Instruction:

{query}

### Response:
<Leave new line for model to respond> 

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM,pipeline

tokenizer = AutoTokenizer.from_pretrained("mwitiderrick/open_llama_3b_instruct_v_0.2")
model = AutoModelForCausalLM.from_pretrained("mwitiderrick/open_llama_3b_instruct_v_0.2")
query = "Provide step-by-step instructions for making a sweet chicken bugger"
text_gen = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=500)
output = text_gen(f"### Instruction:\n{query}\n### Response:\n")
print(output[0]['generated_text'])
"""

"""

Metrics