Edit model card

mistral-7b-merged-dare

mistral-7b-merged-dare is a merge of the following models:

🧩 Configuration

models:
  - model: mistralai/Mistral-7B-v0.1
  - model: samir-fama/SamirGPT-v1
    parameters:
      density: 0.53
      weight: 0.4
  - model: abacusai/Slerp-CM-mist-dpo
    parameters:
      density: 0.53
      weight: 0.3
  - model: EmbeddedLLM/Mistral-7B-Merge-14-v0.2
    parameters:
      density: 0.53
      weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
  int8_mask: true
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mayacinka/West-Ramen-7Bx4"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 73.46
AI2 Reasoning Challenge (25-Shot) 69.71
HellaSwag (10-Shot) 87.05
MMLU (5-Shot) 65.07
TruthfulQA (0-shot) 63.24
Winogrande (5-shot) 81.61
GSM8k (5-shot) 73.01
Downloads last month
81
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including mychen76/mistral-7b-merged-dare