MoE & Merge
Collection
17 items
β’
Updated
β’
1
Quantized openmixtral-6x7b-merged_v2 is a merge of the following 6x7B models:
base_model: mlabonne/Marcoro14-7B-slerp
experts:
- source_model: openchat/openchat-3.5-1210
positive_prompts:
- "chat"
- "assistant"
- "tell me"
- "explain"
- source_model: Weyaxi/Einstein-v4-7B
positive_prompts:
- "physics"
- "biology"
- "chemistry"
- "science"
- source_model: BioMistral/BioMistral-7B
positive_prompts:
- "medical"
- "pubmed"
- "healthcare"
- "health"
- source_model: beowolx/CodeNinja-1.0-OpenChat-7B
positive_prompts:
- "code"
- "python"
- "javascript"
- "programming"
- "algorithm"
- source_model: maywell/PiVoT-0.1-Starling-LM-RP
positive_prompts:
- "storywriting"
- "write"
- "scene"
- "story"
- "character"
- source_model: WizardLM/WizardMath-7B-V1.1
positive_prompts:
- "reason"
- "math"
- "mathematics"
- "solve"
- "count"
tokenizer_source: union
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mychen76/openmixtral-6x7b-v2"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Why the sky is blue"}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.33 |
AI2 Reasoning Challenge (25-Shot) | 68.52 |
HellaSwag (10-Shot) | 86.75 |
MMLU (5-Shot) | 65.11 |
TruthfulQA (0-shot) | 65.13 |
Winogrande (5-shot) | 79.87 |
GSM8k (5-shot) | 68.61 |