File size: 16,681 Bytes
3bff96b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
---
base_model: BAAI/AquilaChat2-7B-16K
inference: false
license: other
model_creator: Beijing Academy of Artificial Intelligence
model_name: Aquilachat2 7B 16K
model_type: aquila
prompt_template: >
  System: A chat between a curious human and an artificial intelligence
  assistant. The assistant gives helpful, detailed, and polite answers to the
  human's questions.

  Human: {prompt}

  Assistant:
quantized_by: mzwing
---

# AquilaChat2 7B 16K - GGUF
- Model creator: [Beijing Academy of Artificial Intelligence](https://huggingface.co/BAAI)
- Original model: [AquilaChat2 7B 16K](https://huggingface.co/BAAI/AquilaChat2-7B-16K)

<!-- description start -->
## Description

This repo contains GGUF format model files for [Beijing Academy of Artificial Intelligence's Aquilachat2 7B 16K](https://huggingface.co/BAAI/AquilaChat2-7B-16K).

These files were quantised using hardware kindly provided by [Google Colab](https://colab.research.google.com/)(Free CPU Machine).

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mzwing/AI-related/blob/master/notebooks/AquilaChat2_7B_16K_GGUF.ipynb)

You can also check it out easily in [my GitHub  repo](https://github.com/mzwing/AI-related/blob/master/notebooks/AquilaChat2_7B_16K_GGUF.ipynb).

<!-- description end -->
<!-- README_GGUF.md-about-gguf start -->
### About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

Here is an incomplate list of clients and libraries that are known to support GGUF:

* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* [Nitro](https://nitro.jan.ai/), a fast, lightweight 3mb inference server to supercharge apps with local AI, and OpenAI-compatible API server.

<!-- README_GGUF.md-about-gguf end -->
<!-- repositories-available start -->
## Repositories available

* [2, 3, 4, 5, 6, 8, 16 and 32-bit GGUF models for CPU+GPU inference](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF)
* [Beijing Academy of Artificial Intelligence's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/BAAI/AquilaChat2-7B-16K)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: AquilaChat

```
System: A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
Human: {prompt}
Assistant:

```

<!-- prompt-template end -->

<!-- compatibility_gguf start -->
## Compatibility

These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)

They are also compatible with many third party UIs and libraries - please see the list at the top of this README.

## Explanation of quantisation methods

<details>
  <summary>Click to see details</summary>

The new methods available are:

* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw

Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->

<!-- README_GGUF.md-provided-files start -->
## Provided files

| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [AquilaChat2-7B-16K.Q2_K.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q2_K.gguf) | Q2_K | 2 | 2.86 GB | untested yet | smallest, significant quality loss - not recommended for most purposes |
| [AquilaChat2-7B-16K.Q3_K_S.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q3_K_S.gguf) | Q3_K_S | 3 | 3.3 GB | untested yet | very small, high quality loss |
| [AquilaChat2-7B-16K.Q3_K_M.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q3_K_M.gguf) | Q3_K_M | 3 | 3.65 GB | untested yet | very small, high quality loss |
| [AquilaChat2-7B-16K.Q3_K_L.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q3_K_L.gguf) | Q3_K_L | 3 | 3.95 GB | untested yet | small, substantial quality loss |
| [AquilaChat2-7B-16K.Q4_0.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q4_0.gguf) | Q4_0 | 4 | 4.22 GB | untested yet | legacy; small, very high quality loss - prefer using Q3_K_M |
| [AquilaChat2-7B-16K.Q4_K_S.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q4_K_S.gguf) | Q4_K_S | 4 | 4.25 GB | untested yet | small, greater quality loss |
| [AquilaChat2-7B-16K.Q4_K_M.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q4_K_M.gguf) | Q4_K_M | 4 | 4.47 GB | untested yet | medium, balanced quality - recommended |
| [AquilaChat2-7B-16K.Q5_0.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q5_0.gguf) | Q5_0 | 5 | 5.08 GB | untested yet | legacy; medium, balanced quality - prefer using Q4_K_M |
| [AquilaChat2-7B-16K.Q5_K_S.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q5_K_S.gguf) | Q5_K_S | 5 | 5.08 GB | untested yet | large, low quality loss - recommended |
| [AquilaChat2-7B-16K.Q5_K_M.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q5_K_M.gguf) | Q5_K_M | 5 | 5.21 GB | untested yet | large, very low quality loss - recommended |
| [AquilaChat2-7B-16K.Q6_K.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q6_K.gguf) | Q6_K | 6 | 5.99 GB | untested yet | very large, extremely low quality loss |
| [AquilaChat2-7B-16K.Q8_0.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q8_0.gguf) | Q8_0 | 8 | 7.76 GB | untested yet | very large, extremely low quality loss - not recommended |
| [AquilaChat2-7B-16K.F16.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.F16.gguf) | F16 | 16 | 14.6 GB | untested yet | extremely large, extremely low quality loss - not recommended |
| [AquilaChat2-7B-16K.F32.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.F32.gguf) | F32 | 32 | 29.2 GB | untested yet | extremely large, extremely low quality loss - not recommended |

**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

<!-- README_GGUF.md-provided-files end -->

<!-- README_GGUF.md-how-to-download start -->
## How to download GGUF files

**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.

The following clients/libraries will automatically download models for you, providing a list of available models to choose from:

* LM Studio
* LoLLMS Web UI
* Faraday.dev

### In `text-generation-webui`

Under Download Model, you can enter the model repo: `mzwing/AquilaChat2-7B-16K-GGUF`, and below it, a specific filename to download, such as: `AquilaChat2-7B-16K.Q4_K_M.gguf`.

Then click Download.

### On the command line, including multiple files at once

I recommend using the `huggingface-hub` Python library:

```shell
pip3 install huggingface-hub
```

Then you can download any individual model file to the current directory, at high speed, with a command like this:

```shell
huggingface-cli download mzwing/AquilaChat2-7B-16K-GGUF AquilaChat2-7B-16K.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```

<details>
  <summary>More advanced huggingface-cli download usage</summary>

You can also download multiple files at once with a pattern:

```shell
huggingface-cli download mzwing/AquilaChat2-7B-16K-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```

For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).

To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:

```shell
pip3 install hf_transfer
```

And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:

```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download mzwing/AquilaChat2-7B-16K-GGUF AquilaChat2-7B-16K.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```

Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
<!-- README_GGUF.md-how-to-download end -->

<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command

Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.

```shell
./main -ngl 32 -m AquilaChat2-7B-16K.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "System: A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nHuman: {prompt}\nAssistant:"
```

Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.

If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`

For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)

## How to run in `text-generation-webui`

Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).

## How to run from Python code

You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.

### How to load this model in Python code, using ctransformers

#### First install the package

Run one of the following commands, according to your system:

```shell
# Base ctransformers with no GPU acceleration
pip install ctransformers
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]
# Or with AMD ROCm GPU acceleration (Linux only)
CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems only
CT_METAL=1 pip install ctransformers --no-binary ctransformers
```

#### Simple ctransformers example code

```python
from ctransformers import AutoModelForCausalLM

# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("mzwing/AquilaChat2-7B-16K-GGUF", model_file="AquilaChat2-7B-16K.Q4_K_M.gguf", model_type="aquila", gpu_layers=50)

print(llm("AI is going to"))
```

## How to use with LangChain

Here are guides on using llama-cpp-python and ctransformers with LangChain:

* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)

<!-- README_GGUF.md-how-to-run end -->

<!-- footer start -->
<!-- 200823 -->
## Thanks, and how to contribute

Thanks to [Google Colab](https://colab.research.google.com/)! All the quantised models in this repo are done on the awesome platform. Thanks a lot!

Thanks to [llama.cpp](https://github.com/ggerganov/llama.cpp)! It inspired me to explore the inspiring AI field, thanks!

Thanks to [TheBloke](https://huggingface.co/TheBloke)! Everything in this repo is a reference to him.

You are welcome to create a **PullRequest**! Especially for the **RAM Usage**!

<!-- footer end -->

<!-- original-model-card start -->
# Original model card: Beijing Academy of Artificial Intelligence's Aquilachat2 7B 16K


![Aquila_logo](https://huggingface.co/BAAI/AquilaChat2-7B-16K/resolve/main/log.jpeg?download=true)


<h4 align="center">
    <p>
        <b>English</b> |
        <a href="https://huggingface.co/BAAI/AquilaChat2-7B-16K/blob/main/README_zh.md">简体中文</a> 
    </p>
</h4>


We opensource our **Aquila2** series, now including **Aquila2**, the base language models, namely **Aquila2-7B** and **Aquila2-34B**, as well as **AquilaChat2**, the chat models, namely **AquilaChat2-7B** and **AquilaChat2-34B**, as well as the long-text chat models, namely **AquilaChat2-7B-16k** and **AquilaChat2-34B-16k**

The additional details of the Aquila model will be presented in the official technical report. Please stay tuned for updates on official channels.

## Quick Start  AquilaChat2-7B-16K(Chat model)

### 1. Inference

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import BitsAndBytesConfig

device = torch.device("cuda:0")
model_info = "BAAI/AquilaChat2-7B-16K"
tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True)
quantization_config=BitsAndBytesConfig(
                        load_in_4bit=True,
                        bnb_4bit_use_double_quant=True,
                        bnb_4bit_quant_type="nf4",
                        bnb_4bit_compute_dtype=torch.bfloat16,
                    )
model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True, torch_dtype=torch.float16,
                                                # quantization_config=quantization_config, # Uncomment this line for 4bit quantization
                                                )
model.eval()
model.to(device)
text = "请给出10个要到北京旅游的理由。"
from predict import predict
out = predict(model, text, tokenizer=tokenizer, max_gen_len=200, top_p=0.95,
              seed=1234, topk=100, temperature=0.9, sft=True, device=device,
              model_name="AquilaChat2-7B-16K")
print(out)
```

## License

Aquila2 series open-source model is licensed under [BAAI Aquila Model Licence Agreement](https://huggingface.co/BAAI/AquilaChat2-7B-16K/blob/main/BAAI-Aquila-Model-License%20-Agreement.pdf)

<!-- original-model-card end -->