|
--- |
|
base_model: '' |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: hubert2BertMusic100 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hubert2BertMusic100 |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4721 |
|
- Rouge1: 26.5915 |
|
- Rouge2: 7.5185 |
|
- Rougel: 18.8807 |
|
- Rougelsum: 18.8279 |
|
- Gen Len: 56.16 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| |
|
| 1.9005 | 1.0 | 1361 | 1.6875 | 27.9936 | 8.03 | 19.6327 | 19.583 | 52.7 | |
|
| 1.7493 | 2.0 | 2722 | 1.6272 | 26.1413 | 7.7635 | 18.9764 | 18.8667 | 53.6 | |
|
| 1.7037 | 3.0 | 4083 | 1.5873 | 27.1884 | 7.3279 | 19.607 | 19.6344 | 56.55 | |
|
| 1.6621 | 4.0 | 5444 | 1.5505 | 31.0103 | 8.788 | 22.4097 | 22.3902 | 60.45 | |
|
| 1.6824 | 5.0 | 6805 | 1.5272 | 26.0334 | 7.709 | 18.5954 | 18.5607 | 54.87 | |
|
| 1.6451 | 6.0 | 8166 | 1.5073 | 30.49 | 7.7309 | 21.4853 | 21.537 | 65.1 | |
|
| 1.6502 | 7.0 | 9527 | 1.4947 | 30.1318 | 8.4307 | 21.6758 | 21.7107 | 61.48 | |
|
| 1.6588 | 8.0 | 10888 | 1.4809 | 27.3167 | 7.7378 | 19.4021 | 19.3359 | 57.38 | |
|
| 1.6896 | 9.0 | 12249 | 1.4737 | 26.7199 | 7.5034 | 18.9846 | 18.9279 | 55.96 | |
|
| 1.7313 | 10.0 | 13610 | 1.4721 | 26.5915 | 7.5185 | 18.8807 | 18.8279 | 56.16 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.2 |
|
- Tokenizers 0.13.3 |
|
|