|
--- |
|
base_model: '' |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: hubert2BertMusicTestL5e7 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hubert2BertMusicTestL5e7 |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2639 |
|
- Rouge1: 28.296 |
|
- Rouge2: 7.1646 |
|
- Rougel: 20.2478 |
|
- Rougelsum: 20.191 |
|
- Gen Len: 58.92 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 7 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| |
|
| 4.7701 | 1.0 | 1361 | 3.6345 | 29.4772 | 6.5481 | 21.1446 | 21.1031 | 51.04 | |
|
| 3.3104 | 2.0 | 2722 | 2.9389 | 24.7952 | 6.9239 | 19.4001 | 19.4318 | 31.01 | |
|
| 2.9088 | 3.0 | 4083 | 2.6221 | 29.6422 | 7.2219 | 21.0592 | 21.0778 | 57.25 | |
|
| 2.7274 | 4.0 | 5444 | 2.4599 | 28.0386 | 8.311 | 20.629 | 20.6316 | 50.06 | |
|
| 2.6417 | 5.0 | 6805 | 2.3503 | 28.7788 | 8.8058 | 21.2309 | 21.2204 | 57.54 | |
|
| 2.5002 | 6.0 | 8166 | 2.2905 | 31.5292 | 8.3235 | 22.2364 | 22.2584 | 65.09 | |
|
| 2.4481 | 7.0 | 9527 | 2.2639 | 28.296 | 7.1646 | 20.2478 | 20.191 | 58.92 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.2 |
|
- Tokenizers 0.13.3 |
|
|