nairaxo's picture
End of training
72204e2 verified
metadata
library_name: transformers
license: cc0-1.0
base_model: bionlp/bluebert_pubmed_uncased_L-24_H-1024_A-16
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: medical-ner-bluebert
    results: []

medical-ner-bluebert

This model is a fine-tuned version of bionlp/bluebert_pubmed_uncased_L-24_H-1024_A-16 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0894
  • Precision: 0.9365
  • Recall: 0.9705
  • F1: 0.9532
  • Accuracy: 0.9810

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 90 0.7138 0.5501 0.6082 0.5777 0.7757
No log 2.0 180 0.6697 0.5391 0.7574 0.6298 0.7863
No log 3.0 270 0.4996 0.6284 0.8024 0.7048 0.8429
No log 4.0 360 0.3957 0.6779 0.8332 0.7476 0.8760
No log 5.0 450 0.2886 0.7603 0.8658 0.8096 0.9160
0.4932 6.0 540 0.2345 0.8026 0.8839 0.8413 0.9321
0.4932 7.0 630 0.2061 0.8290 0.9121 0.8686 0.9419
0.4932 8.0 720 0.1715 0.8537 0.9226 0.8868 0.9518
0.4932 9.0 810 0.1454 0.8701 0.9374 0.9025 0.9603
0.4932 10.0 900 0.1422 0.8857 0.9437 0.9137 0.9635
0.4932 11.0 990 0.1134 0.9081 0.9516 0.9293 0.9718
0.0935 12.0 1080 0.1147 0.9075 0.9582 0.9322 0.9722
0.0935 13.0 1170 0.1039 0.9165 0.9616 0.9385 0.9757
0.0935 14.0 1260 0.0978 0.9256 0.9658 0.9453 0.9774
0.0935 15.0 1350 0.0925 0.9283 0.9671 0.9473 0.9797
0.0935 16.0 1440 0.0873 0.9378 0.9679 0.9526 0.9813
0.0301 17.0 1530 0.0927 0.9334 0.9703 0.9515 0.9803
0.0301 18.0 1620 0.0903 0.9355 0.97 0.9525 0.9804
0.0301 19.0 1710 0.0890 0.9373 0.9711 0.9539 0.9811
0.0301 20.0 1800 0.0894 0.9365 0.9705 0.9532 0.9810

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3