Edit model card

nampham1106/bkcare-embedding

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Installation

  • Install sentence-transformers:

    • pip install -U sentence-transformers
  • Install pyvi to word segment:

    • pip install pyvi

Example usage

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
from pyvi.ViTokenizer import tokenize
sentences = ["Đang chích ngừa viêm gan B có chích ngừa Covid-19 được không?", "Nếu anh / chị đang tiêm ngừa vaccine phòng_bệnh viêm_gan B , anh / chị vẫn có_thể tiêm phòng vaccine phòng Covid-19 , tuy_nhiên vaccine Covid-19 phải được tiêm cách trước và sau mũi vaccine viêm gan B tối_thiểu là 14 ngày ."]

model = SentenceTransformer('nampham1106/bkcare-embedding')
sentences = [tokenize(sentence) for sentence in sentences]
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch
from pyvi.ViTokenizer import tokenize

#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ["Đang chích ngừa viêm gan B có chích ngừa Covid-19 được không?", "Nếu anh / chị đang tiêm ngừa vaccine phòng_bệnh viêm_gan B , anh / chị vẫn có_thể tiêm phòng vaccine phòng Covid-19 , tuy_nhiên vaccine Covid-19 phải được tiêm cách trước và sau mũi vaccine viêm gan B tối_thiểu là 14 ngày ."]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('nampham1106/bkcare-embedding')
model = AutoModel.from_pretrained('nampham1106/bkcare-embedding')

sentences = [tokenize(sentence) for sentence in sentences]
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 307 with parameters:

{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20.0, 'similarity_fct': 'cos_sim'}

Parameters of the fit()-Method:

{
    "epochs": 15,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 100,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Citing & Authors

Downloads last month
31
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train nampham1106/bkcare-embedding