Edit model card

nyt_ingredients-tagger-gte-small-L3-ingredient-v2

This model is a fine-tuned version of napsternxg/gte-small-L3-ingredient-v2 on the nyt_ingredients dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4705
  • Comment: {'precision': 0.6653720111664037, 'recall': 0.7644679960953842, 'f1': 0.7114860480207656, 'number': 7171}
  • Name: {'precision': 0.7963734889537307, 'recall': 0.8212788823213326, 'f1': 0.8086344637849849, 'number': 9305}
  • Qty: {'precision': 0.981755684822845, 'recall': 0.9907938625750501, 'f1': 0.9862540673351484, 'number': 7495}
  • Range End: {'precision': 0.6240601503759399, 'recall': 0.9222222222222223, 'f1': 0.7443946188340806, 'number': 90}
  • Unit: {'precision': 0.923100969052829, 'recall': 0.9861412589747871, 'f1': 0.95358036651328, 'number': 5989}
  • Overall Precision: 0.8312
  • Overall Recall: 0.8832
  • Overall F1: 0.8564
  • Overall Accuracy: 0.8350

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Comment Name Qty Range End Unit Overall Precision Overall Recall Overall F1 Overall Accuracy
0.6931 0.2 1000 0.6230 {'precision': 0.5236127508854782, 'recall': 0.6426604839878278, 'f1': 0.5770606987183658, 'number': 6901} {'precision': 0.7773012207192346, 'recall': 0.7980128711753416, 'f1': 0.7875208913649026, 'number': 8857} {'precision': 0.9824561403508771, 'recall': 0.9737098344693281, 'f1': 0.9780634343998882, 'number': 7189} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 92} {'precision': 0.9192320423700762, 'recall': 0.9689462665736218, 'f1': 0.9434346865975879, 'number': 5732} 0.7829 0.8362 0.8086 0.7986
0.5826 0.4 2000 0.5531 {'precision': 0.5435365427205968, 'recall': 0.6756991740327489, 'f1': 0.602454780361757, 'number': 6901} {'precision': 0.7757141305528402, 'recall': 0.8063678446426555, 'f1': 0.7907440212577502, 'number': 8857} {'precision': 0.9659028914348063, 'recall': 0.9851161496731117, 'f1': 0.9754149163280765, 'number': 7189} {'precision': 0.6055045871559633, 'recall': 0.717391304347826, 'f1': 0.6567164179104478, 'number': 92} {'precision': 0.9177049180327869, 'recall': 0.9766224703419399, 'f1': 0.9462474645030426, 'number': 5732} 0.7837 0.8533 0.8170 0.8079
0.5435 0.59 3000 0.5327 {'precision': 0.5801165331391115, 'recall': 0.6925083321257789, 'f1': 0.6313494946826079, 'number': 6901} {'precision': 0.7839085513299626, 'recall': 0.8052387941740996, 'f1': 0.7944305207463102, 'number': 8857} {'precision': 0.9771436487048067, 'recall': 0.9812213103352344, 'f1': 0.9791782343142699, 'number': 7189} {'precision': 0.6302521008403361, 'recall': 0.8152173913043478, 'f1': 0.7109004739336493, 'number': 92} {'precision': 0.9126637554585153, 'recall': 0.9844731332868109, 'f1': 0.9472093999160722, 'number': 5732} 0.7999 0.8579 0.8279 0.8150
0.5333 0.79 4000 0.5212 {'precision': 0.5875760104924288, 'recall': 0.7140994058832053, 'f1': 0.6446886446886447, 'number': 6901} {'precision': 0.786660777385159, 'recall': 0.8043355537992548, 'f1': 0.7953999888349244, 'number': 8857} {'precision': 0.9837716843872412, 'recall': 0.9781610794269022, 'f1': 0.9809583594894328, 'number': 7189} {'precision': 0.6390977443609023, 'recall': 0.9239130434782609, 'f1': 0.7555555555555556, 'number': 92} {'precision': 0.9263366992219831, 'recall': 0.9762735519888346, 'f1': 0.9506497918967128, 'number': 5732} 0.8050 0.8608 0.8319 0.8183
0.5199 0.99 5000 0.5121 {'precision': 0.5873457536898137, 'recall': 0.7035212288074192, 'f1': 0.6402057097646205, 'number': 6901} {'precision': 0.7890984865101996, 'recall': 0.812351812126002, 'f1': 0.8005563282336579, 'number': 8857} {'precision': 0.978519955654102, 'recall': 0.9821950201697037, 'f1': 0.9803540437348144, 'number': 7189} {'precision': 0.6615384615384615, 'recall': 0.9347826086956522, 'f1': 0.7747747747747747, 'number': 92} {'precision': 0.9197843489625878, 'recall': 0.9822051639916259, 'f1': 0.9499704716105627, 'number': 5732} 0.8047 0.8629 0.8328 0.8186
0.4983 1.19 6000 0.5088 {'precision': 0.6041901894367081, 'recall': 0.6978698739313143, 'f1': 0.6476600322754169, 'number': 6901} {'precision': 0.7801047120418848, 'recall': 0.8074968951112115, 'f1': 0.7935644937586686, 'number': 8857} {'precision': 0.980998613037448, 'recall': 0.983864237028794, 'f1': 0.9824293353705119, 'number': 7189} {'precision': 0.6511627906976745, 'recall': 0.9130434782608695, 'f1': 0.7601809954751132, 'number': 92} {'precision': 0.9193864229765013, 'recall': 0.9829030006978368, 'f1': 0.9500843170320405, 'number': 5732} 0.8090 0.8606 0.8340 0.8192
0.5031 1.39 7000 0.5031 {'precision': 0.6055345911949686, 'recall': 0.6975800608607449, 'f1': 0.6483065113460373, 'number': 6901} {'precision': 0.7835422343324251, 'recall': 0.8116743818448685, 'f1': 0.797360248447205, 'number': 8857} {'precision': 0.9752815160670145, 'recall': 0.9878981777715955, 'f1': 0.9815493055075669, 'number': 7189} {'precision': 0.6666666666666666, 'recall': 0.9130434782608695, 'f1': 0.7706422018348623, 'number': 92} {'precision': 0.9269467043001827, 'recall': 0.9740055826936497, 'f1': 0.9498936622713738, 'number': 5732} 0.8107 0.8610 0.8351 0.8199
0.492 1.58 8000 0.5041 {'precision': 0.6209482341557814, 'recall': 0.743950152151862, 'f1': 0.6769068494956819, 'number': 6901} {'precision': 0.7778260869565218, 'recall': 0.8079485152986339, 'f1': 0.7926012072880323, 'number': 8857} {'precision': 0.983001254005852, 'recall': 0.9813604117401585, 'f1': 0.9821801475706529, 'number': 7189} {'precision': 0.6423357664233577, 'recall': 0.9565217391304348, 'f1': 0.7685589519650656, 'number': 92} {'precision': 0.9215493188905302, 'recall': 0.9795882763433357, 'f1': 0.9496828752642706, 'number': 5732} 0.8113 0.8706 0.8399 0.8246
0.4817 1.78 9000 0.4901 {'precision': 0.6196705426356589, 'recall': 0.7413418345167367, 'f1': 0.6750676255195619, 'number': 6901} {'precision': 0.7891447368421053, 'recall': 0.8125776222197132, 'f1': 0.8006897702620014, 'number': 8857} {'precision': 0.9798370390829996, 'recall': 0.9869244679371262, 'f1': 0.9833679833679833, 'number': 7189} {'precision': 0.6474820143884892, 'recall': 0.9782608695652174, 'f1': 0.7792207792207793, 'number': 92} {'precision': 0.9168422758956071, 'recall': 0.9867411025819958, 'f1': 0.9505083606419629, 'number': 5732} 0.8134 0.8743 0.8427 0.8293
0.4905 1.98 10000 0.4892 {'precision': 0.6241463414634146, 'recall': 0.7416316475873062, 'f1': 0.6778359049069598, 'number': 6901} {'precision': 0.7911287653095002, 'recall': 0.8095291859546122, 'f1': 0.8002232142857143, 'number': 8857} {'precision': 0.9846860643185299, 'recall': 0.983864237028794, 'f1': 0.9842749791260784, 'number': 7189} {'precision': 0.6717557251908397, 'recall': 0.9565217391304348, 'f1': 0.789237668161435, 'number': 92} {'precision': 0.9170723790976956, 'recall': 0.9858688066992324, 'f1': 0.9502270052127123, 'number': 5732} 0.8166 0.8724 0.8436 0.8288
0.4757 2.18 11000 0.4954 {'precision': 0.6271186440677966, 'recall': 0.7398927691638892, 'f1': 0.6788539520042544, 'number': 6901} {'precision': 0.7921020789792103, 'recall': 0.8130292424071356, 'f1': 0.802429240026744, 'number': 8857} {'precision': 0.9801077496891836, 'recall': 0.9869244679371262, 'f1': 0.9835042971998891, 'number': 7189} {'precision': 0.6428571428571429, 'recall': 0.9782608695652174, 'f1': 0.7758620689655172, 'number': 92} {'precision': 0.9226609864001311, 'recall': 0.9823796231681786, 'f1': 0.9515842839036756, 'number': 5732} 0.8179 0.8732 0.8447 0.8274
0.4691 2.38 12000 0.4903 {'precision': 0.6292872780345414, 'recall': 0.7497464135632517, 'f1': 0.6842557693579316, 'number': 6901} {'precision': 0.7935547734271887, 'recall': 0.8146099130631139, 'f1': 0.803944509443423, 'number': 8857} {'precision': 0.9806816613771215, 'recall': 0.9885936847962165, 'f1': 0.984621778886118, 'number': 7189} {'precision': 0.6544117647058824, 'recall': 0.967391304347826, 'f1': 0.780701754385965, 'number': 92} {'precision': 0.9238204456094364, 'recall': 0.9837752965806001, 'f1': 0.9528556944913822, 'number': 5732} 0.8189 0.8767 0.8468 0.8301
0.4765 2.57 13000 0.4846 {'precision': 0.6338439095550693, 'recall': 0.7555426749746413, 'f1': 0.6893633899649634, 'number': 6901} {'precision': 0.7977640026566305, 'recall': 0.8137066726882691, 'f1': 0.805656475322788, 'number': 8857} {'precision': 0.9850891861761427, 'recall': 0.9833078314090973, 'f1': 0.9841977027497391, 'number': 7189} {'precision': 0.6774193548387096, 'recall': 0.9130434782608695, 'f1': 0.7777777777777777, 'number': 92} {'precision': 0.9219950940310712, 'recall': 0.9836008374040475, 'f1': 0.9518021440027011, 'number': 5732} 0.8219 0.8763 0.8482 0.8307
0.4747 2.77 14000 0.4844 {'precision': 0.6380844929171368, 'recall': 0.7375742645993334, 'f1': 0.6842317515795134, 'number': 6901} {'precision': 0.791246160596753, 'recall': 0.8143841029694028, 'f1': 0.8026484170700496, 'number': 8857} {'precision': 0.9796255506607929, 'recall': 0.9898455974405341, 'f1': 0.9847090569431951, 'number': 7189} {'precision': 0.6546762589928058, 'recall': 0.9891304347826086, 'f1': 0.7878787878787878, 'number': 92} {'precision': 0.9195252804422045, 'recall': 0.9867411025819958, 'f1': 0.9519481612387444, 'number': 5732} 0.8212 0.8747 0.8471 0.8314
0.4654 2.97 15000 0.4808 {'precision': 0.6453574975173784, 'recall': 0.7533690769453703, 'f1': 0.6951928862739855, 'number': 6901} {'precision': 0.7925608011444921, 'recall': 0.8131421474539912, 'f1': 0.8027195720017833, 'number': 8857} {'precision': 0.9827013562136728, 'recall': 0.9877590763666713, 'f1': 0.9852237252861602, 'number': 7189} {'precision': 0.6641221374045801, 'recall': 0.9456521739130435, 'f1': 0.7802690582959643, 'number': 92} {'precision': 0.9255791030064071, 'recall': 0.9829030006978368, 'f1': 0.9533801506049582, 'number': 5732} 0.8246 0.8767 0.8499 0.8332
0.4586 3.17 16000 0.4827 {'precision': 0.6517362858580775, 'recall': 0.7506158527749601, 'f1': 0.6976900801400768, 'number': 6901} {'precision': 0.7901383703052932, 'recall': 0.812351812126002, 'f1': 0.8010911317708622, 'number': 8857} {'precision': 0.979906413432425, 'recall': 0.990402003060231, 'f1': 0.9851262538913871, 'number': 7189} {'precision': 0.6641221374045801, 'recall': 0.9456521739130435, 'f1': 0.7802690582959643, 'number': 92} {'precision': 0.9193364774760123, 'recall': 0.9862177250523377, 'f1': 0.9516034003871727, 'number': 5732} 0.8247 0.8771 0.8501 0.8317
0.4612 3.37 17000 0.4869 {'precision': 0.6441053408811224, 'recall': 0.7584408056803362, 'f1': 0.6966127636920211, 'number': 6901} {'precision': 0.7845718637797846, 'recall': 0.8141582928756915, 'f1': 0.7990913120567377, 'number': 8857} {'precision': 0.9844271412680756, 'recall': 0.9848379468632633, 'f1': 0.9846325012168833, 'number': 7189} {'precision': 0.6641221374045801, 'recall': 0.9456521739130435, 'f1': 0.7802690582959643, 'number': 92} {'precision': 0.9158439877002751, 'recall': 0.9872644801116539, 'f1': 0.9502140878179833, 'number': 5732} 0.8200 0.8783 0.8482 0.8308
0.4546 3.56 18000 0.4806 {'precision': 0.6482188295165394, 'recall': 0.7382987972757571, 'f1': 0.6903326332904275, 'number': 6901} {'precision': 0.788654181184669, 'recall': 0.8177712543750706, 'f1': 0.8029488387561666, 'number': 8857} {'precision': 0.9817704736914791, 'recall': 0.9888718876060648, 'f1': 0.9853083853083853, 'number': 7189} {'precision': 0.6854838709677419, 'recall': 0.9239130434782609, 'f1': 0.787037037037037, 'number': 92} {'precision': 0.9236179260713118, 'recall': 0.9851709699930217, 'f1': 0.9534019922336655, 'number': 5732} 0.8249 0.8752 0.8493 0.8315
0.4471 3.76 19000 0.4823 {'precision': 0.6466100652147164, 'recall': 0.7614838429213158, 'f1': 0.6993611924407772, 'number': 6901} {'precision': 0.7929254092057564, 'recall': 0.8149486282036807, 'f1': 0.8037861915367484, 'number': 8857} {'precision': 0.983906770255272, 'recall': 0.9865071637223536, 'f1': 0.9852052510939778, 'number': 7189} {'precision': 0.676923076923077, 'recall': 0.9565217391304348, 'f1': 0.7927927927927929, 'number': 92} {'precision': 0.9211943220753793, 'recall': 0.984996510816469, 'f1': 0.9520276536548351, 'number': 5732} 0.8242 0.8793 0.8508 0.8328
0.4542 3.96 20000 0.4758 {'precision': 0.6508980521123198, 'recall': 0.7456890305752789, 'f1': 0.6950766529344229, 'number': 6901} {'precision': 0.7868081382629621, 'recall': 0.8121260020322908, 'f1': 0.7992666259236624, 'number': 8857} {'precision': 0.9829734219269103, 'recall': 0.9877590763666713, 'f1': 0.9853604384930272, 'number': 7189} {'precision': 0.6744186046511628, 'recall': 0.9456521739130435, 'f1': 0.7873303167420815, 'number': 92} {'precision': 0.920559986977047, 'recall': 0.9865666434054431, 'f1': 0.9524210526315788, 'number': 5732} 0.8244 0.8753 0.8491 0.8326
0.4452 4.16 21000 0.4833 {'precision': 0.6566687938736439, 'recall': 0.7455441240399941, 'f1': 0.6982899022801302, 'number': 6901} {'precision': 0.7843478260869565, 'recall': 0.8147228181099695, 'f1': 0.7992468294844105, 'number': 8857} {'precision': 0.981750311074243, 'recall': 0.9877590763666713, 'f1': 0.9847455276660656, 'number': 7189} {'precision': 0.6854838709677419, 'recall': 0.9239130434782609, 'f1': 0.787037037037037, 'number': 92} {'precision': 0.9249303392886412, 'recall': 0.9844731332868109, 'f1': 0.9537733457280487, 'number': 5732} 0.8261 0.8755 0.8501 0.8339
0.4412 4.36 22000 0.4888 {'precision': 0.6534954407294833, 'recall': 0.7477177220692653, 'f1': 0.6974386700006758, 'number': 6901} {'precision': 0.7870067582297798, 'recall': 0.8151744382973919, 'f1': 0.8008429926238145, 'number': 8857} {'precision': 0.9839268394069558, 'recall': 0.9877590763666713, 'f1': 0.9858392336526447, 'number': 7189} {'precision': 0.6717557251908397, 'recall': 0.9565217391304348, 'f1': 0.789237668161435, 'number': 92} {'precision': 0.9248280379954144, 'recall': 0.9851709699930217, 'f1': 0.9540462916033113, 'number': 5732} 0.8261 0.8764 0.8505 0.8325
0.4423 4.55 23000 0.4827 {'precision': 0.6532828282828282, 'recall': 0.7497464135632517, 'f1': 0.6981985021253626, 'number': 6901} {'precision': 0.7874007180937874, 'recall': 0.817093824093937, 'f1': 0.8019725177304966, 'number': 8857} {'precision': 0.9835202880487467, 'recall': 0.9878981777715955, 'f1': 0.9857043719639139, 'number': 7189} {'precision': 0.6766917293233082, 'recall': 0.9782608695652174, 'f1': 0.7999999999999999, 'number': 92} {'precision': 0.9264850672792911, 'recall': 0.984996510816469, 'f1': 0.9548452562151193, 'number': 5732} 0.8262 0.8776 0.8511 0.8338
0.4507 4.75 24000 0.4740 {'precision': 0.6584520600693108, 'recall': 0.7433705260107231, 'f1': 0.69833923223523, 'number': 6901} {'precision': 0.7933530766699572, 'recall': 0.8166422039065147, 'f1': 0.8048291977300545, 'number': 8857} {'precision': 0.9801898472967395, 'recall': 0.9910975100848518, 'f1': 0.9856135011758197, 'number': 7189} {'precision': 0.6692307692307692, 'recall': 0.9456521739130435, 'f1': 0.7837837837837838, 'number': 92} {'precision': 0.922976501305483, 'recall': 0.9867411025819958, 'f1': 0.9537942664418213, 'number': 5732} 0.8290 0.8770 0.8523 0.8347
0.4452 4.95 25000 0.4791 {'precision': 0.6528792569659443, 'recall': 0.7639472540211564, 'f1': 0.7040598290598291, 'number': 6901} {'precision': 0.7875054513737462, 'recall': 0.8155131534379587, 'f1': 0.8012646292084975, 'number': 8857} {'precision': 0.9825798423890502, 'recall': 0.9885936847962165, 'f1': 0.9855775897933713, 'number': 7189} {'precision': 0.6640625, 'recall': 0.9239130434782609, 'f1': 0.7727272727272728, 'number': 92} {'precision': 0.9227881162259223, 'recall': 0.9862177250523377, 'f1': 0.953449148254343, 'number': 5732} 0.8245 0.8807 0.8517 0.8352
0.4274 5.15 26000 0.4807 {'precision': 0.6607946026986506, 'recall': 0.766410665120997, 'f1': 0.7096947333109694, 'number': 6901} {'precision': 0.795727342803656, 'recall': 0.8158518685785254, 'f1': 0.8056639536180176, 'number': 8857} {'precision': 0.9844660194174757, 'recall': 0.9873417721518988, 'f1': 0.9859017987360232, 'number': 7189} {'precision': 0.6935483870967742, 'recall': 0.9347826086956522, 'f1': 0.7962962962962964, 'number': 92} {'precision': 0.9229010127409344, 'recall': 0.9856943475226797, 'f1': 0.9532647207693606, 'number': 5732} 0.8300 0.8811 0.8548 0.8361
0.4312 5.35 27000 0.4861 {'precision': 0.6542461005199307, 'recall': 0.7658310389798579, 'f1': 0.7056545830829829, 'number': 6901} {'precision': 0.7903508771929825, 'recall': 0.8138195777351248, 'f1': 0.8019135562107137, 'number': 8857} {'precision': 0.981501932633904, 'recall': 0.989010989010989, 'f1': 0.9852421533984619, 'number': 7189} {'precision': 0.6717557251908397, 'recall': 0.9565217391304348, 'f1': 0.789237668161435, 'number': 92} {'precision': 0.9154405820533549, 'recall': 0.9877878576413119, 'f1': 0.9502391541495343, 'number': 5732} 0.8243 0.8812 0.8518 0.8335
0.4315 5.54 28000 0.4820 {'precision': 0.6583983883152859, 'recall': 0.7577162730039124, 'f1': 0.7045745469244761, 'number': 6901} {'precision': 0.7930996593780903, 'recall': 0.8149486282036807, 'f1': 0.8038757099899767, 'number': 8857} {'precision': 0.9831328632655882, 'recall': 0.9891500904159132, 'f1': 0.9861322978782415, 'number': 7189} {'precision': 0.6796875, 'recall': 0.9456521739130435, 'f1': 0.7909090909090909, 'number': 92} {'precision': 0.9204878048780488, 'recall': 0.9876133984647593, 'f1': 0.9528698872243729, 'number': 5732} 0.8282 0.8796 0.8531 0.8341
0.4316 5.74 29000 0.4762 {'precision': 0.6612373737373738, 'recall': 0.7588755252861904, 'f1': 0.7066999527697188, 'number': 6901} {'precision': 0.7980441709702231, 'recall': 0.8200293553121825, 'f1': 0.8088874039425326, 'number': 8857} {'precision': 0.9830040071852978, 'recall': 0.9895673946306858, 'f1': 0.9862747816442535, 'number': 7189} {'precision': 0.672, 'recall': 0.9130434782608695, 'f1': 0.7741935483870968, 'number': 92} {'precision': 0.9263813739957371, 'recall': 0.9856943475226797, 'f1': 0.955117910573916, 'number': 5732} 0.8316 0.8810 0.8556 0.8370
0.4278 5.94 30000 0.4823 {'precision': 0.6596223583843942, 'recall': 0.7643819736270105, 'f1': 0.7081487447979596, 'number': 6901} {'precision': 0.7918309242225142, 'recall': 0.8164163938128034, 'f1': 0.8039357385068653, 'number': 8857} {'precision': 0.9835339698353397, 'recall': 0.9887327862011406, 'f1': 0.9861265260821309, 'number': 7189} {'precision': 0.68, 'recall': 0.9239130434782609, 'f1': 0.783410138248848, 'number': 92} {'precision': 0.9244109947643979, 'recall': 0.9856943475226797, 'f1': 0.9540695710908478, 'number': 5732} 0.8286 0.8811 0.8540 0.8348
0.4211 6.14 31000 0.4794 {'precision': 0.6637281206081512, 'recall': 0.7527894508042313, 'f1': 0.705458989679522, 'number': 6901} {'precision': 0.7826885671061162, 'recall': 0.8177712543750706, 'f1': 0.7998453978245265, 'number': 8857} {'precision': 0.9804649883065071, 'recall': 0.9913757128947003, 'f1': 0.9858901646147462, 'number': 7189} {'precision': 0.6854838709677419, 'recall': 0.9239130434782609, 'f1': 0.787037037037037, 'number': 92} {'precision': 0.925495333224169, 'recall': 0.9860432658757851, 'f1': 0.9548103724976772, 'number': 5732} 0.8274 0.8794 0.8526 0.8356
0.4231 6.34 32000 0.4757 {'precision': 0.6627510420613869, 'recall': 0.7603245906390378, 'f1': 0.7081927385612093, 'number': 6901} {'precision': 0.7868816735672259, 'recall': 0.815400248391103, 'f1': 0.8008871638480732, 'number': 8857} {'precision': 0.9844875346260388, 'recall': 0.9887327862011406, 'f1': 0.9866055937261433, 'number': 7189} {'precision': 0.696, 'recall': 0.9456521739130435, 'f1': 0.8018433179723502, 'number': 92} {'precision': 0.9235918367346939, 'recall': 0.9869155617585486, 'f1': 0.9542042675212956, 'number': 5732} 0.8284 0.8801 0.8535 0.8364
0.4302 6.53 33000 0.4786 {'precision': 0.6624333248666497, 'recall': 0.7558324880452109, 'f1': 0.706057529610829, 'number': 6901} {'precision': 0.7953421948808085, 'recall': 0.8174325392345038, 'f1': 0.8062360801781736, 'number': 8857} {'precision': 0.9832664914949523, 'recall': 0.989010989010989, 'f1': 0.986130374479889, 'number': 7189} {'precision': 0.7017543859649122, 'recall': 0.8695652173913043, 'f1': 0.7766990291262136, 'number': 92} {'precision': 0.9243216737495914, 'recall': 0.9865666434054431, 'f1': 0.9544303797468354, 'number': 5732} 0.8312 0.8794 0.8546 0.8355
0.4223 6.73 34000 0.4795 {'precision': 0.6597820577800304, 'recall': 0.7545283292276481, 'f1': 0.703981612925032, 'number': 6901} {'precision': 0.7922049485439019, 'recall': 0.8169809190470814, 'f1': 0.8044022011005503, 'number': 8857} {'precision': 0.9832664914949523, 'recall': 0.989010989010989, 'f1': 0.986130374479889, 'number': 7189} {'precision': 0.6904761904761905, 'recall': 0.9456521739130435, 'f1': 0.7981651376146789, 'number': 92} {'precision': 0.923730197615548, 'recall': 0.9867411025819958, 'f1': 0.9541965415436525, 'number': 5732} 0.8292 0.8792 0.8535 0.8363
0.4184 6.93 35000 0.4803 {'precision': 0.6614741641337386, 'recall': 0.7568468337922041, 'f1': 0.7059539095762654, 'number': 6901} {'precision': 0.788057099269914, 'recall': 0.8165292988596591, 'f1': 0.8020405899966729, 'number': 8857} {'precision': 0.9823472624465591, 'recall': 0.9908193072750034, 'f1': 0.9865650969529086, 'number': 7189} {'precision': 0.6821705426356589, 'recall': 0.9565217391304348, 'f1': 0.7963800904977375, 'number': 92} {'precision': 0.9216229428059313, 'recall': 0.9867411025819958, 'f1': 0.9530710253601821, 'number': 5732} 0.8278 0.8801 0.8532 0.8356
0.4071 7.13 36000 0.4882 {'precision': 0.6610340479192938, 'recall': 0.7596000579626141, 'f1': 0.7068977142471848, 'number': 6901} {'precision': 0.7952072111685171, 'recall': 0.8167551089533702, 'f1': 0.8058371393561323, 'number': 8857} {'precision': 0.9823423920540765, 'recall': 0.9905411044651551, 'f1': 0.9864247125640672, 'number': 7189} {'precision': 0.6904761904761905, 'recall': 0.9456521739130435, 'f1': 0.7981651376146789, 'number': 92} {'precision': 0.9252826478780928, 'recall': 0.9851709699930217, 'f1': 0.9542881284326151, 'number': 5732} 0.8304 0.8804 0.8547 0.8358
0.4093 7.33 37000 0.4856 {'precision': 0.6579605098725319, 'recall': 0.7629329082741632, 'f1': 0.7065691471515801, 'number': 6901} {'precision': 0.794249972566663, 'recall': 0.8172067291407926, 'f1': 0.8055648302726766, 'number': 8857} {'precision': 0.9832734310201825, 'recall': 0.9894282932257615, 'f1': 0.9863412604867227, 'number': 7189} {'precision': 0.7, 'recall': 0.9130434782608695, 'f1': 0.7924528301886793, 'number': 92} {'precision': 0.9225248735932148, 'recall': 0.9867411025819958, 'f1': 0.9535530641490347, 'number': 5732} 0.8286 0.8813 0.8542 0.8367
0.4124 7.52 38000 0.4802 {'precision': 0.6584084084084084, 'recall': 0.762498188668309, 'f1': 0.7066407036862955, 'number': 6901} {'precision': 0.7942951179374658, 'recall': 0.8174325392345038, 'f1': 0.8056977520587582, 'number': 8857} {'precision': 0.9831375259156876, 'recall': 0.9894282932257615, 'f1': 0.9862728785357736, 'number': 7189} {'precision': 0.6821705426356589, 'recall': 0.9565217391304348, 'f1': 0.7963800904977375, 'number': 92} {'precision': 0.9221244705115673, 'recall': 0.9874389392882066, 'f1': 0.9536647009267059, 'number': 5732} 0.8286 0.8815 0.8543 0.8362
0.414 7.72 39000 0.4830 {'precision': 0.6575084681972149, 'recall': 0.7594551514273293, 'f1': 0.7048144163528779, 'number': 6901} {'precision': 0.7878721779910568, 'recall': 0.8156260584848143, 'f1': 0.8015089315433264, 'number': 8857} {'precision': 0.9819235545743066, 'recall': 0.9898455974405341, 'f1': 0.9858686616791354, 'number': 7189} {'precision': 0.6850393700787402, 'recall': 0.9456521739130435, 'f1': 0.7945205479452054, 'number': 92} {'precision': 0.925229057591623, 'recall': 0.9865666434054431, 'f1': 0.9549138804457953, 'number': 5732} 0.8268 0.8802 0.8527 0.8366
0.4212 7.92 40000 0.4803 {'precision': 0.6614674319940105, 'recall': 0.7681495435444139, 'f1': 0.7108280254777071, 'number': 6901} {'precision': 0.7921052631578948, 'recall': 0.8156260584848143, 'f1': 0.8036936084997496, 'number': 8857} {'precision': 0.9846089850249584, 'recall': 0.9877590763666713, 'f1': 0.9861815151725575, 'number': 7189} {'precision': 0.6854838709677419, 'recall': 0.9239130434782609, 'f1': 0.787037037037037, 'number': 92} {'precision': 0.9240444299248611, 'recall': 0.9869155617585486, 'f1': 0.9544457567065969, 'number': 5732} 0.8292 0.8817 0.8547 0.8373
0.3994 8.12 41000 0.4923 {'precision': 0.6586345381526104, 'recall': 0.7604694971743226, 'f1': 0.7058981774161006, 'number': 6901} {'precision': 0.7905782052683353, 'recall': 0.8166422039065147, 'f1': 0.8033988670443185, 'number': 8857} {'precision': 0.9830016583747927, 'recall': 0.9894282932257615, 'f1': 0.9862045060658579, 'number': 7189} {'precision': 0.6821705426356589, 'recall': 0.9565217391304348, 'f1': 0.7963800904977375, 'number': 92} {'precision': 0.9232903541700669, 'recall': 0.9869155617585486, 'f1': 0.9540433426089888, 'number': 5732} 0.8278 0.8807 0.8535 0.8355
0.4052 8.32 42000 0.4866 {'precision': 0.6577553593947036, 'recall': 0.7558324880452109, 'f1': 0.7033915447373744, 'number': 6901} {'precision': 0.7920087575259989, 'recall': 0.8168680140002258, 'f1': 0.8042463317029791, 'number': 8857} {'precision': 0.9823326432022084, 'recall': 0.9899846988454584, 'f1': 0.9861438270749618, 'number': 7189} {'precision': 0.6846153846153846, 'recall': 0.967391304347826, 'f1': 0.8018018018018018, 'number': 92} {'precision': 0.9250531827851416, 'recall': 0.9862177250523377, 'f1': 0.9546567592670776, 'number': 5732} 0.8285 0.8797 0.8533 0.8360
0.4042 8.51 43000 0.4866 {'precision': 0.663912546078556, 'recall': 0.7568468337922041, 'f1': 0.7073401950162513, 'number': 6901} {'precision': 0.7910823838737949, 'recall': 0.8152873433442475, 'f1': 0.8030025020850708, 'number': 8857} {'precision': 0.980462300495322, 'recall': 0.991236611489776, 'f1': 0.9858200179843675, 'number': 7189} {'precision': 0.6796875, 'recall': 0.9456521739130435, 'f1': 0.7909090909090909, 'number': 92} {'precision': 0.921961550993809, 'recall': 0.9872644801116539, 'f1': 0.9534962089300758, 'number': 5732} 0.8292 0.8799 0.8538 0.8365
0.4135 8.71 44000 0.4830 {'precision': 0.664262212098203, 'recall': 0.7606144037096073, 'f1': 0.7091805715057758, 'number': 6901} {'precision': 0.7914884282110344, 'recall': 0.8147228181099695, 'f1': 0.802937576499388, 'number': 8857} {'precision': 0.9812594736116853, 'recall': 0.9905411044651551, 'f1': 0.985878443859892, 'number': 7189} {'precision': 0.6829268292682927, 'recall': 0.9130434782608695, 'f1': 0.7813953488372093, 'number': 92} {'precision': 0.9230141901810471, 'recall': 0.9872644801116539, 'f1': 0.9540588384051252, 'number': 5732} 0.8296 0.8804 0.8543 0.8368
0.3958 8.91 45000 0.4859 {'precision': 0.6619275289380976, 'recall': 0.7623532821330242, 'f1': 0.7085999057175567, 'number': 6901} {'precision': 0.7909240021869874, 'recall': 0.8166422039065147, 'f1': 0.8035773802910788, 'number': 8857} {'precision': 0.9831445150594087, 'recall': 0.9898455974405341, 'f1': 0.9864836764400082, 'number': 7189} {'precision': 0.6910569105691057, 'recall': 0.9239130434782609, 'f1': 0.7906976744186046, 'number': 92} {'precision': 0.9235543939888925, 'recall': 0.9863921842288904, 'f1': 0.9539395984477813, 'number': 5732} 0.8290 0.8811 0.8543 0.8371
0.3985 9.11 46000 0.4897 {'precision': 0.6627135934710533, 'recall': 0.7530792638748007, 'f1': 0.7050125483280201, 'number': 6901} {'precision': 0.7878688881629097, 'recall': 0.8168680140002258, 'f1': 0.8021064301552105, 'number': 8857} {'precision': 0.9842192691029901, 'recall': 0.989010989010989, 'f1': 0.9866093110386457, 'number': 7189} {'precision': 0.6771653543307087, 'recall': 0.9347826086956522, 'f1': 0.7853881278538813, 'number': 92} {'precision': 0.9269413889344935, 'recall': 0.984996510816469, 'f1': 0.9550875412331895, 'number': 5732} 0.8296 0.8785 0.8533 0.8352
0.3944 9.31 47000 0.4890 {'precision': 0.6661152818424736, 'recall': 0.7585857122156209, 'f1': 0.709349593495935, 'number': 6901} {'precision': 0.7902785363189514, 'recall': 0.8168680140002258, 'f1': 0.8033533200088829, 'number': 8857} {'precision': 0.9839535205422604, 'recall': 0.9894282932257615, 'f1': 0.9866833125260092, 'number': 7189} {'precision': 0.6854838709677419, 'recall': 0.9239130434782609, 'f1': 0.787037037037037, 'number': 92} {'precision': 0.9251923391717138, 'recall': 0.9860432658757851, 'f1': 0.954649100582721, 'number': 5732} 0.8308 0.8801 0.8547 0.8369
0.3959 9.5 48000 0.4869 {'precision': 0.6632755589047978, 'recall': 0.765251412838719, 'f1': 0.7106236964273699, 'number': 6901} {'precision': 0.7917122239230264, 'recall': 0.8175454442813593, 'f1': 0.8044214853080043, 'number': 8857} {'precision': 0.9835476289229919, 'recall': 0.9895673946306858, 'f1': 0.9865483289418943, 'number': 7189} {'precision': 0.688, 'recall': 0.9347826086956522, 'f1': 0.7926267281105991, 'number': 92} {'precision': 0.9240196078431373, 'recall': 0.9865666434054431, 'f1': 0.9542693216334796, 'number': 5732} 0.8297 0.8820 0.8551 0.8369
0.3979 9.7 49000 0.4878 {'precision': 0.666244939271255, 'recall': 0.7630778148094479, 'f1': 0.7113812901046943, 'number': 6901} {'precision': 0.7906239755218009, 'recall': 0.8168680140002258, 'f1': 0.8035317636605953, 'number': 8857} {'precision': 0.9835453539823009, 'recall': 0.9894282932257615, 'f1': 0.9864780528396089, 'number': 7189} {'precision': 0.6829268292682927, 'recall': 0.9130434782608695, 'f1': 0.7813953488372093, 'number': 92} {'precision': 0.9240071907174375, 'recall': 0.9863921842288904, 'f1': 0.9541810817652518, 'number': 5732} 0.8304 0.8812 0.8550 0.8369
0.4095 9.9 50000 0.4862 {'precision': 0.665783497350492, 'recall': 0.7646717866975801, 'f1': 0.7118095366561004, 'number': 6901} {'precision': 0.7912472647702407, 'recall': 0.8165292988596591, 'f1': 0.80368950380619, 'number': 8857} {'precision': 0.9832734310201825, 'recall': 0.9894282932257615, 'f1': 0.9863412604867227, 'number': 7189} {'precision': 0.6829268292682927, 'recall': 0.9130434782608695, 'f1': 0.7813953488372093, 'number': 92} {'precision': 0.9244604316546763, 'recall': 0.9863921842288904, 'f1': 0.9544226873733964, 'number': 5732} 0.8304 0.8814 0.8552 0.8373

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for napsternxg/nyt_ingredients-tagger-gte-small-L3-ingredient-v2

Finetuned
(3)
this model

Dataset used to train napsternxg/nyt_ingredients-tagger-gte-small-L3-ingredient-v2