food / README.md
dog's picture
update model card
9b17556
|
raw
history blame
1.96 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
  - image-classification
  - pytorch
datasets:
  - food101
metrics:
  - accuracy
model_index:
  - name: food101_outputs
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: nateraw/food101
          type: food101
          args: default
        metric:
          name: Accuracy
          type: accuracy
          value: 0.8912871287128713

food101_outputs

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the nateraw/food101 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4501
  • Accuracy: 0.8913

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8271 1.0 592 0.6070 0.8562
0.4376 2.0 1184 0.4947 0.8691
0.2089 3.0 1776 0.4876 0.8747
0.0882 4.0 2368 0.4639 0.8857
0.0452 5.0 2960 0.4501 0.8913

Framework versions

  • Transformers 4.9.0.dev0
  • Pytorch 1.9.0+cu102
  • Datasets 1.9.1.dev0
  • Tokenizers 0.10.3