metadata
license: apache-2.0
language:
- en
pipeline_tag: text-generation
tags:
- chat
Qwen2-7B-Instruct-abliterated
Introduction
Abliterated version of Qwen2-7B-Instruct using failspy's notebook. The model's strongest refusal directions have been ablated via weight orthogonalization, but the model may still refuse your request, misunderstand your intent, or provide unsolicited advice regarding ethics or safety.
Quickstart
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "natong19/Qwen2-7B-Instruct-abliterated"
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=256
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
Evaluation
Evaluation framework: lm-evaluation-harness 0.4.2
Datasets | Qwen2-7B-Instruct | Qwen2-7B-Instruct-abliterated |
---|---|---|
ARC (25-shot) | 62.5 | 62.5 |
GSM8K (5-shot) | 73.0 | 72.2 |
HellaSwag (10-shot) | 81.8 | 81.7 |
MMLU (5-shot) | 70.7 | 70.5 |
TruthfulQA (0-shot) | 57.3 | 55.0 |
Winogrande (5-shot) | 76.2 | 77.4 |