mHuBERT-147-ASR-fr / README.md
mzboito's picture
Update README.md
f5f3de8 verified
---
license: cc-by-nc-sa-4.0
base_model: utter-project/mHuBERT-147
datasets:
- FBK-MT/Speech-MASSIVE
- FBK-MT/Speech-MASSIVE-test
- mozilla-foundation/common_voice_17_0
- google/fleurs
language:
- fr
metrics:
- wer
- cer
pipeline_tag: automatic-speech-recognition
---
**This is a small CTC-based Automatic Speech Recognition system for French.**
This model is part of our SLU demo available here: https://huggingface.co/spaces/naver/French-SLU-DEMO-Interspeech2024
Please check our blog post available at: TBD
* Training data: 123 hours (84,707 utterances)
* Normalization: Whisper normalization
# Table of Contents:
1. [Performance](https://huggingface.co/naver/mHuBERT-147-ASR-fr#performance)
2. [Training Parameters](https://huggingface.co/naver/mHuBERT-147-ASR-fr#training-parameters)
3. [ASR Model class](https://huggingface.co/naver/mHuBERT-147-ASR-fr#asr-model-class)
4. [Running inference](https://huggingface.co/naver/mHuBERT-147-ASR-fr#running-inference)
## Performance
| | **dev WER** | **dev CER** | **test WER** | **test CER** |
|:------------------:|:-----------:|:-----------:|:------------:|:------------:|
| **speechMASSIVE** | 9.2 | 2.6 | 9.6 | 2.9 |
| **fleurs102** | 20.0 | 7.0 | 22.0 | 7.7 |
| **CommonVoice 17** | 16.0 | 4.9 | 19.0 | 6.5 |
## Training Parameters
This is a [mHuBERT-147](https://huggingface.co/utter-project/mHuBERT-147) ASR fine-tuned model.
The training parameters are available in [config.json](https://huggingface.co/naver/mHuBERT-147-ASR-fr/blob/main/config.json).
We highlight the use of 0.3 for hubert.final_dropout, which we found to be very helpful in convergence. We also use fp32 training, as we found fp16 training to be unstable.
## ASR Model Class
We use the mHubertForCTC class for our model, which is nearly identical to the existing HubertForCTC class.
The key difference is that we've added a few additional hidden layers at the end of the Transformer stack, just before the lm_head.
The code is available in [CTC_model.py](https://huggingface.co/naver/mHuBERT-147-ASR-fr/blob/main/inference_code/CTC_model.py).
## Running Inference
The [run_inference.py](https://huggingface.co/naver/mHuBERT-147-ASR-fr/blob/main/inference_code/run_inference.py) file illustrates how to load the model for inference (**load_asr_model**), and how to produce transcription for a file (**run_asr_inference**).
Please follow the [requirements file](https://huggingface.co/naver/mHuBERT-147-ASR-fr/blob/main/requirements.txt) to avoid incorrect model loading.
Here is a simple example of the inference loop. Please notice that the sampling rate must be 16,000Hz.
```
from inference_code.run_inference import load_asr_model, run_asr_inference
model, processor = load_asr_model()
prediction = run_inference(model, processor, your_audio_file)
```