metadata
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_6_1
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-turkish-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_6_1
type: common_voice_6_1
config: sah
split: test
args: sah
metrics:
- name: Wer
type: wer
value: 0.25161387179102235
wav2vec2-large-mms-1b-turkish-colab
This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_6_1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1919
- Wer: 0.2516
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 14
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.8237 | 0.76 | 100 | 0.2160 | 0.2746 |
0.2621 | 1.52 | 200 | 0.2046 | 0.2647 |
0.2287 | 2.27 | 300 | 0.1980 | 0.2560 |
0.2263 | 3.03 | 400 | 0.1937 | 0.2530 |
0.2171 | 3.79 | 500 | 0.1919 | 0.2516 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0